17 research outputs found

    The steroid hormone estriol (E3) regulates epigenetic programming of fetal mouse brain and reproductive tract.

    Full text link
    peer reviewed[en] BACKGROUND: Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system. RESULTS: We administered E3 to pregnant mice, exposing the fetus to E3. Adult females exposed to E3 in utero (E3-mice) had increased fertility and superior pregnancy outcomes. Female and male E3-mice showed decreased anxiety and increased exploratory behavior. The expression levels and DNA methylation patterns of multiple genes in the uteri and brains of E3-mice were distinct from controls. E3 promoted complexing of estrogen receptors with several DNA/histone modifiers and their binding to target genes. E3 functions by driving epigenetic change, mediated through epigenetic modifier interactions with estrogen receptors rather than through canonical nuclear transcriptional activation. CONCLUSIONS: We identify an unexpected functional role for E3 in fetal reproductive system and brain. We further identify a novel mechanism of estrogen action, through recruitment of epigenetic modifiers to estrogen receptors and their target genes, which is not correlated with the traditional view of estrogen potency

    Effect of Simvastatin on Baboon Endometriosis

    No full text
    Endometriosis, a common disorder affecting women of reproductive age is characterized by ectopic growth of the endometrial tissues, altered steroid hormone response and inflammation. Previous studies revealed that statins, selective inhibitors of the key step of mevalonate pathway, inhibit growth of endometrial stromal cells in vitro and reduce endometriotic lesions in murine models of endometriosis. This study evaluated the effects of simvastatin on the development of endometriosis in a baboon model of this disease. Sixteen baboons were randomly assigned to the treatment group (simvastatin, 20 mg daily) or to the control group. Endometriotic lesions were evaluated by laparoscopy after three months. The volume of red, orange-red and white endometriotic lesions was significantly reduced by 78% in animals treated with simvastatin. The expression of a marker of proliferation, proliferating cell nuclear antigen (PCNA) was significantly reduced in animals receiving simvastatin in red lesions, white lesions, black lesions and in adhesions. Simvastatin was also associated with an increase in the expression of estrogen receptor alpha in red lesions, and a decrease in the expression of estrogen receptor beta in black lesions, in adhesions, and in eutopic endometrium. Furthermore, simvastatin significantly reduced the expression of neopterin, a marker of inflammation, oxidative stress and immune system activation. Collectively, the present findings indicate that the inhibition of the mevalonate pathway by simvastatin reduces the risk of developing endometriosis in the primate model of this disease by decreasing the growth of endometrial lesions, by modulating the expression of genes encoding for estrogen receptors, and by reducing inflammation.status: publishe

    N \u3csup\u3e6\u3c/sup\u3e-methyladenine in DNA antagonizes SATB1 in early development

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2–4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD–SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development

    Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy.

    No full text
    Decidua is a transient uterine tissue shared by mammals with hemochorial placenta and is essential for pregnancy. The decidua is infiltrated by many immune cells promoting pregnancy. Adult bone marrow (BM)-derived cells (BMDCs) differentiate into rare populations of nonhematopoietic endometrial cells in the uterus. However, whether adult BMDCs become nonhematopoietic decidual cells and contribute functionally to pregnancy is unknown. Here, we show that pregnancy mobilizes mesenchymal stem cells (MSCs) to the circulation and that pregnancy induces considerable adult BMDCs recruitment to decidua, where some differentiate into nonhematopoietic prolactin-expressing decidual cells. To explore the functional importance of nonhematopoietic BMDCs to pregnancy, we used Homeobox a11 (Hoxa11)-deficient mice, having endometrial stromal-specific defects precluding decidualization and successful pregnancy. Hoxa11 expression in BM is restricted to nonhematopoietic cells. BM transplant (BMT) from wild-type (WT) to Hoxa11-/- mice results in stromal expansion, gland formation, and marked decidualization otherwise absent in Hoxa11-/- mice. Moreover, in Hoxa11+/- mice, which have increased pregnancy losses, BMT from WT donors leads to normalized uterine expression of numerous decidualization-related genes and rescue of pregnancy loss. Collectively, these findings reveal that adult BMDCs have a previously unrecognized nonhematopoietic physiologic contribution to decidual stroma, thereby playing important roles in decidualization and pregnancy
    corecore