915 research outputs found

    Probing molecular free energy landscapes by periodic loading

    Get PDF
    Single molecule pulling experiments provide information about interactions in biomolecules that cannot be obtained by any other method. However, the reconstruction of the molecule's free energy profile from the experimental data is still a challenge, in particular for the unstable barrier regions. We propose a new method for obtaining the full profile by introducing a periodic ramp and using Jarzynski's identity for obtaining equilibrium quantities from non-equilibrium data. Our simulated experiments show that this method delivers significant more accurate data than previous methods, under the constraint of equal experimental effort.Comment: 4 pages, 3 figure

    A Connection between Obscuration and Star Formation in Luminous Quasars

    Get PDF
    We present a measurement of the star formation properties of a uniform sample of mid-IR selected, unobscured and obscured quasars (QSO1s and QSO2s) in the Bo\ otes survey region. We use an spectral energy distribution (SED) analysis for photometric data spanning optical to far-IR wavelengths to decompose AGN and host galaxy components. We find that when compared to a matched sample of QSO1s, the QSO2s have higher far-IR detection fractions, far-IR fluxes and infrared star formation luminosities (LSFIR) by a factor of ∼2. Correspondingly, we show that the AGN obscured fraction rises from 0.3 to 0.7 between 4−40×1011L⊙. We also find evidence associating the absorption in the X-ray emission with the presence of far-IR emitting dust. Overall, these results are consistent with galaxy evolution models in which quasar obscurations can be associated with a dust-enshrouded starburst galaxie

    Polymer translocation through a nanopore under an applied external field

    Get PDF
    We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the 2D fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength EE, length of the chain NN, and length of the pore LL on forced translocation. As our main result, we find a crossover scaling for the translocation time τ\tau with the chain length from τ∼N2ν\tau \sim N^{2\nu} for relatively short polymers to τ∼N1+ν\tau \sim N^{1 + \nu} for longer chains, where ν\nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v∼N−νv \sim N^{- \nu}, which crosses over to v∼N−1v \sim N^{- 1} for long polymers. The reason for this is that with increasing NN there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R∥R_\parallel , the radius of gyration RgR_{g} along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large NN, however, the asymptotic scaling τ∼N1+ν\tau \sim N^{1 + \nu} is recovered. In this regime, τ\tau is almost independent of LL. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R∥≈LR_\parallel \approx L. We show here that this minimum persists for a weak fields EE such that ELEL is less than some critical value, but vanishes for large values of ELEL.Comment: 25 Pages, 10 figures. Submitted to J. Chem. Phys. J. Chem. Phys. 124, in press (2006

    Polymer translocation through a nanopore: a two-dimensional Monte Carlo simulation

    Get PDF
    We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional (2D) fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore, and study the escape time required for the polymer to completely exit the pore on either end. In particular, we examined the effect of the pore length on the escape time.Comment: 16Pages, 6 figure

    Mechanochemical action of the dynamin protein

    Full text link
    Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is implicated in many membrane severing processes in eukaryotic cells. Setting the grounds for a better understanding of this biological function, we develop a generalized hydrodynamics description of the conformational change of large dynamin-membrane tubes taking into account GTP consumption as a free energy source. On observable time scales, dissipation is dominated by an effective dynamin/membrane friction and the deformation field of the tube has a simple diffusive behavior, which could be tested experimentally. A more involved, semi-microscopic model yields complete predictions for the dynamics of the tube and possibly accounts for contradictory experimental results concerning its change of conformation as well as for plectonemic supercoiling.Comment: 17 pages, 4 figures; typos corrected, reference adde

    An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins

    Get PDF
    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach

    Molecular Spiders in One Dimension

    Full text link
    Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.Comment: 14 pages, 2 figure

    Stochastic Eulerian Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations

    Full text link
    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.Comment: 24 pages, 3 figure

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens
    • …
    corecore