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Probing Molecular Free Energy Landscapes by Periodic Loading

Oliver Braun,1 Andreas Hanke,1,2,* and Udo Seifert1
1Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

2Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
(Received 17 February 2004; published 8 October 2004)

Single molecule pulling experiments provide information about interactions in biomolecules that
cannot be obtained by any other method. However, the reconstruction of the molecule’s free energy
profile from the experimental data is still a challenge, in particular, for the unstable barrier regions. We
propose a new method for obtaining the full profile by introducing a periodic ramp and using
Jarzynski’s relation for obtaining equilibrium quantities from nonequilibrium data. Our simulated
experiments show that this method delivers significant more accurate data than previous methods, under
the constraint of equal experimental effort.

DOI: 10.1103/PhysRevLett.93.158105 PACS numbers: 87.15.La, 05.70.Ln, 87.15.Aa, 87.64.Dz

Introduction.— A key feature of biological systems is
the high degree of self-organization of polymers, pro-
teins, and other macromolecules, and their interaction
with smaller components such as energy providers or
messenger molecules [1]. These processes are ultimately
driven by specific and tunable molecular interactions.
Their detailed knowledge is thus a prerequisite for the
understanding how biological systems work on molecular
and higher levels. Recent developments of highly sensi-
tive force probes such as atomic force microscopy [2,3],
optical and magnetic tweezers [4–6], and biomembrane
force probes [7,8] make it possible to probe the molecular
interactions of individual biomolecules by their response
to mechanical stress (see [9,10] for reviews). The systems
studied by single molecule pulling experiments can be
divided in two groups: in rupture experiments, receptor
and ligand molecules are attached to a substrate and a
transducer, respectively, often via chemical linkers. After
allowing receptors and ligands to bind, the transducer,
e.g., an atomic force microscopy cantilever, is pulled
away, which causes the receptor-ligand pairs to rupture.
The maximum force the molecule can withstand has been
measured in this way for biotin and streptavidin [2,8],
and many other receptor-ligand pairs [11]. Secondly, un-
and refolding experiments probe the elastic properties of
an individual biomolecule. The molecule is attached be-
tween a substrate and a transducer, again via chemical
linkers. Force-extension relations are obtained by mea-
suring the force as a function of the position of the
transducer. In this way one may explore regions of the
free energy landscape of the biomolecule far away from
thermal folding pathways. Investigated systems include
DNA [12–14], RNA [15,16], polysaccharides, the muscle
protein titin [17], the membrane protein bacteriorhodop-
sin (BR) [18], and many other proteins [19].

Figure 1 shows a typical setup of single molecule pull-
ing experiments. The molecule is attached between the
substrate surface and the cantilever tip. The position of
the cantilever x�t� is moved according to a prescribed
experimental protocol. The extension of the molecule is

described by a suitable reaction coordinate z given by
the position of the cantilever tip. For fixed extension z
and time t, the energy of the molecule perturbed by
the cantilever spring is given by the time-dependent
Hamiltonian

H�z; t� � G�z� � V0�z; x�t�� � G�z� �
k
2
�x�t� � z�2; (1)

where G�z� is the free energy profile of the unperturbed
molecule. The second term describes the external force
acting on the molecule in terms of a harmonic potential
with effective spring constant k. Since the molecule is
coupled to a heat bath at temperature T the time evolution
of z is stochastic.

Traditionally, the cantilever is moved according to a
linear ramp,

x�t� � x0 � vt; (2)

with offset x0 at t � 0 and constant velocity v, and the

z x

cantilever

G

0

FIG. 1. Schematic view of the experimental setup and a
generic free energy potential G�z�. The first minimum repre-
sents the folded state, whereas the second shallow minimum
represents the unfolded state of the biopolymer. The coordinate
x denotes the position of the cantilever and z the position of the
cantilever tip to which one end of the biopolymer is attached.
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force F�t; v� acting on the cantilever is recorded. The
challenge is to recover from these data the unperturbed
molecule’s free energy profileG�z� containing the desired
information about the molecular interactions. Evans and
Ritchie first pointed out that the rupture force of receptor-
ligand pairs depends on the loading rate v [20]. Thus, by
combining the data F�t; v� for a broad spectrum of load-
ing rates v, referred to as dynamic force spectroscopy,
important features of G�z� can be determined such as the
distance between the minimum and maximum of an
energy barrier for rupture [20]. Heymann and
Grubmüller refined this technique and obtained the
heights and positions of the maxima of a molecular force
profile @zG�z� with high spatial resolution [21]. On the
other hand, traditional experimental protocols like the
linear ramp (2) still entail certain drawbacks. First of
all, the thermodynamically unstable (concave) barrier
regions of G�z�, determined by specific molecular inter-
actions and therefore of particular interest, are poorly
sampled due to snapping motion and thus hard to deter-
mine [21].

Periodic loading.— In an effort to improve the quality
of data obtained by single molecule pulling experiments,
in this work we propose a new method for obtaining the
full free energy profile G�z� by introducing a periodic
ramp, i.e.,

x�t� � x0 � a sin�!t�; (3)

with given offset x0, amplitude a, and frequency !.
Figure 2 shows that periodic loading delivers significant
more accurate data for the sample free energy profileG�z�
than the linear ramp (2), under the constraint of equal
experimental effort. The improvement of the quality of
data in the important barrier region of G�z� around z ’
4 nm is striking. The better performance of the periodic
loading method as compared to linear loading is mainly
due to the fact that periodic loading ensures that the
barrier region is traversed often and from both sides.
The quality of our reconstruction moreover depends cru-
cially on the fact that we sample the barrier region under
nonequilibrium conditions taking advantage of
Jarzynski’s relation to recover the equilibrium profile
[22,23]. Driving the system out of equilibrium is impor-
tant since under quasistatic conditions an efficient sam-
pling of the barrier region [where G�z� 
 kBT] is
inhibited by the equilibrium Boltzmann factor
exp��G�z�=�kBT�� � 1. For periodic loading, the free-
dom to choose the frequency ! large enough allows one
to probe the same region under nonequilibrium condi-
tions, thus overriding the exponential punishment by the
equilibrium Boltzmann factor. The optimal frequency
arises from balancing competing effects as quantified in
a case study below. This frequency should not be too large
in order to enable the system to follow the external drive.
Moreover, the Jarzynski procedure converges the slower

the further one is away from equilibrium [24]. For too
small an !, on the other hand, one does not generate
enough crossings under the constraint of a finite total
measuring time.

Simulated experiments.— We have tested our proposal
of periodic loading with simulated experiments and com-
pared it with the traditional method of linear loading. To
this end we have chosen a generic free energy profile G�z�
for the unfolding of tertiary structures of biopolymers
such as the membrane protein BR [18]. Our sample free
energy profile has two separated minima, one of which is
narrow and deep representing the folded state and one of
which is shallow representing the unfolded state, see
Fig. 1. For BR, a rich structure of unfolding transitions
under force was found [18]. Single force peaks in the
unfolding spectra could be allocated to specific changes
in molecular configuration. Most of the force peaks scat-
ter between 25 up to 100 pN.With a typical length scale of
several nanometers this yields an energy barrier of about
20 kBT at room temperature. We focus on one of such
transitions and choose a barrier of 2 nm length and
23 kBT height, leading to a typical transition force of
about 50 pN in our simulated pulling experiments.

For comparing the periodic with the linear ramp, we
simulated both kinds of protocols using typical parame-
ters as given in the caption of Fig. 2. We have generated an
ensemble of trajectories ��t� of the reaction coordinate z
by discretizing the Langevin equation

dz=dt � ���1@H�z; t�=@z�
�������
2D

p
��t� (4)
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FIG. 2. Comparison of reconstructed free energy profiles
G�z� by using periodic (  ) vs linear loading ( � ), generated
by (6). The solid line is the original free energy profileG�z�. For
both methods, ten trajectories of 75 ms length, a spring
constant k � 11:6 pN=nm, and a diffusion constant D �
10�7cm2=s were used [see (1) and (4)]. For periodic loading
we used the optimal frequency!� � 1:2� 1031=s (determined
in Fig. 3), the preloading offset x0 � 6 nm, and the amplitude
a � 5 nm in (3). For linear loading we used the optimal
velocity v� � 200 nm=s (determined in Fig. 3). The inset
compares the relative deviation of the reconstructed data
from the original profile G�z� corresponding to the zero line.

VOLUME 93, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S week ending
8 OCTOBER 2004

158105-2 158105-2



with the Hamiltonian H�z; t� from (1). The Gaussian
random force ��t� has zero mean and short-ranged tem-
poral correlations h��t���t0�i � ��t� t0�. The diffusion
constant D is related to the friction coefficient � by the
Einstein relation D � kBT=�. In our simulations, the
length of a time step is limited by the condition that a
spatial step should be small compared to the typical
length scale set by the free energy profile. In addition,
the recording rate of the data ��t� should be much smaller
than an inverse time step but large enough to resolve the
cantilever motion.

The reconstructed free energy profile for both proto-
cols is shown in Fig. 2. The overall quality of the data
obtained by the periodic ramp is far better than the linear
ramp, especially in the barrier region where the data
obtained by the linear ramp underestimates the barrier
height by several kBT. In order to ensure an unbiased
comparison, we have chosen the same total number of
trajectories and the same total measuring time for both
methods [25]. In practice, the measuring time of the
trajectories, once prepared, is not a limiting factor. The
periodic ramp therefore allows measuring as many tran-
sitions as necessary to collect the sufficient amount of
data. Note in this respect that the periodic protocol re-
quires less equilibration than the previously introduced
numerical method of using data both from forward and
backward trajectories [26]. In the latter case, one has to
generate equilibrium states at the beginning of each of
these trajectories by waiting sufficiently long at the turn-
ing points, whereas in our case only the initial state at t �
0 has to be equilibrated.

Reconstruction using Jarzynski’s relation.— Pulling
protocols both in real experiments and in simulations
used here typically generate nonequilibrium data from
which one has to recover an equilibrium property like
G�z�. Furthermore, as outlined above, the method pro-
posed here purposely takes advantage of the nonequilib-
rium conditions generated by a large enough optimal
driving frequency !�, to be determined below. The diffi-
culty to recover equilibrium properties from nonequilib-
rium data may be resolved by using a recent advance in
nonequilibrium statistical mechanics due to Jarzynski
[22], according to which the equilibrium profile G�z�
can be inferred by suitably averaging nonequilibrium
trajectories ��t� of the reaction coordinate z [23]. This
method was verified by stretching RNA reversibly and
irreversibly between two conformations indeed [27].

Jarzynski’s relation, in general, states that the free
energy difference �G between two equilibrium states
can be extracted from averaging the work W required to
drive the system from one state to the other according to
e���G � he��Wi with � � 1=kBT the inverse tempera-
ture [22]. It holds under the assumption of a Markovian
dynamics which leaves an instantaneous equilibrium
state invariant [28]. These conditions are met for the

Langevin dynamics (4). The generalization from two
states to a z-resolved free energy profile G�z� perturbed
by a harmonic spring (1) reads [23]

e���H�z;t��G0� � h��z� ��t��e��W�t�i: (5)

The average h:::i is over infinitely many realizations ��t0�,
0< t0 < t, of the stochastic trajectory of the biopolymer’s
end position, starting in equilibrium at t0 � 0 and ending
at the given position z at t0 � t as enforced by the delta
function. The external work is a functional of ��t0� given
by the integral W�t� �

R
t
0 dt

0@�H���t
0�; ��j��t0 , which we

discretize in our simulation. The constant G0 �

�kBT ln�
R
1
0 dz

0e��H�z
0;0�=�T� is the free energy in the

initial state at t � 0, where the thermal wavelength �T �
h=

�������������������
2�mkBT

p
serves for normalization.

Summing up the normalized distributions obtained
from (5) at each time slice with the method of weighted
histograms [29] yields the reconstruction formula for the
unperturbed free energy profile of the molecule

G�z� � ���1 ln
X
t

h��z� ��t�� exp���W�t��i
hexp���W�t��i�X

t

exp���V0�z; x�t���
hexp���W�t��i

: (6)

Using this expression, we have generated the data shown
in Fig. 2.

Optimization with respect to frequency/velocity.— The
quality of the reconstructed free energy profile depends
crucially on the driving frequency ! for the periodic
ramp and the velocity v for the linear ramp, respectively.
To quantify this observation, we calculate the mean
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FIG. 3. Mean square error !2 and error bars for recon-
structed free energy profiles by using the linear ramp (2) as
a function of v (top scale, �), and the periodic ramp (3) as a
function of ! (bottom scale, ) (compare Fig. 2). Both meth-
ods use ten runs with ten trajectories each. The optimal velocity
v� and frequency !�, respectively, indicated by the vertical
dashed line, correspond to the smallest error.
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square error !2 � h� eG�z� �G�z��2izi where the average is
taken over discrete values zi in the z interval under
consideration. For clarity, we denote by eG�z� the recon-
structed free energy profile based on (6). For a better
reconstruction quality, !2 is smaller. The z interval is
chosen from the first to the second minimum. The total
measuring time and the number of trajectories are the
same as before.

Figure 3 shows the mean square error !2 of the recon-
structed free energy and some characteristic confidence
intervals (error bars) for both protocols. For periodic
loading, the best results were obtained for the optimal
driving frequency !� ’ 1:2� 103 1=s, which yields an
error of !2 ’ 0:9�kBT�2. This frequency is somewhat
smaller than the spontaneous transition rate under pre-
loading, which is about 7� 103 1=s for our model system.
By analyzing the work distribution we have convinced
ourselves that !� indeed corresponds to nonequilibrium
conditions. For both smaller and larger frequencies than
!� the quality of the reconstructed data becomes worse as
expected from our reasoning above.

For linear loading, the error increases for increasing
driving velocity v, as expected. Since we fixed the total
measuring time and the total number of trajectories, the
least possible velocity for overcoming the barrier is v ’
100 nm=s. The smallest error of !2 ’ 1:7�kBT�

2, how-
ever, was observed at a larger, optimal velocity v� ’
200 nm=s, with an error bar of 0.03. For the unbiased
comparison in Fig. 2, we have chosen the optimal values
!� and v� from the data shown in Fig. 3.

Discussion and summary.— We have proposed a new
method for recovering the free energy profile G�z� of
biomolecules in single molecule pulling experiments by
combining the new periodic ramp (3) with Jarzynski’s
relation for recovering equilibrium properties from non-
equilibrium data. The simulated data in Fig. 2 show that
the periodic ramp delivers significantly more accurate
data than the traditional linear loading (2), under the
constraint of equal experimental effort. An additional
advantage of the periodic ramp is the fact that the mea-
suring time may be chosen as long as necessary to collect
the sufficient amount of data to recover the barrier re-
gions of the free energy profile, which are hard to deter-
mine by previous methods.

The driving frequency ! and preloading offset x0 of
the periodic ramp (3) provide handles to optimize its
performance (see Fig. 3). As our model case study has
shown, the frequency should be large enough to drive the
system out of equilibrium, but still smaller than the
spontaneous transition rate under preloading. Our method
can be extended to probing more complex free energy
profiles with different transitions between intermediate
metastable states [30]. If these states are sufficiently
separated, i.e., by several nanometers and energy barriers
of several kBT, each transition can be selected by using

suitable values for preloading offset x0 and amplitude a in
(3). A detailed investigation of the parameter dependence
of the optimal frequency, and of more complex free
energy profiles, is left for future work.

*New address: Department of Physics, University of Texas
at Brownsville, 80 Fort Brown, Brownsville, TX 78520,
USA
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