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We investigate the problem of polymer translocation through a nanopore in the absence of an
external driving force. To this end, we use the two-dimensional fluctuating bond model with
single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions,
we consider a polymer which is initially placed in the middle of the pore and study the escape time
� required for the polymer to completely exit the pore on either end. We find numerically that �
scales with the chain length N as ��N1+2�, where � is the Flory exponent. This is the same scaling
as predicted for the translocation time of a polymer which passes through the nanopore in one
direction only. We examine the interplay between the pore length L and the radius of gyration Rg.
For L�Rg, we numerically verify that asymptotically ��N1+2�. For L�Rg, we find ��N. In
addition, we numerically find the scaling function describing crossover between short and long
pores. We also show that � has a minimum as a function of L for longer chains when the radius of
gyration along the pore direction R� �L. Finally, we demonstrate that the stiffness of the polymer
does not change the scaling behavior of translocation dynamics for single-segment dynamics.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2161189�

I. INTRODUCTION

The translocation of biopolymers through nanometer-
scale pores is one of the most crucial processes in biology,
such as DNA and RNA translocations across nuclear pores,
protein transport through membrane channels, and virus
injection.1–3 Moreover, translocation processes might eventu-
ally prove useful in various technological applications, such
as rapid DNA sequencing,4,5 gene therapy, controlled drug
delivery, etc.6 In addition to its biological relevance, the
translocation dynamics is also a challenging topic in polymer
physics. Accordingly, the polymer translocation has attracted
a considerable number of experimental,7–14 theoretical,15–28

and numerical studies.29–36

The translocation of a polymer through a nanopore faces
a large entropic barrier due to the loss of a great number of
available configurations. In order to overcome the barrier and
to speed up the translocation, an external field or interaction
is often introduced. The possible driving mechanisms include
an external electric field, a chemical-potential difference, or
selective adsorption on one side of the membrane. For ex-
ample, in 1996, Kasianowicz et al.7 reported that an electric
field can drive single-stranded DNA and RNA molecules

through the �-hemolysin channel with an inside diameter of
2 nm and that the passage of each molecule is signaled by
the blockade in the channel current.

Inspired by the experiments,7 a number of recent
theories15–28 have been developed for the dynamics of poly-
mer translocation. Even without an external driving force,
polymer translocation remains a challenging problem. To this
end, Sung and Park16 and Muthukumar19 considered equilib-
rium entropy of the polymer as a function of the position of
the polymer through the nanopore. The geometric restriction
leads to an entropic barrier. Standard Kramer analysis of dif-
fusion through this entropic barrier yields a scaling predic-
tion of the translocation time �tran�N2 for long chains. How-
ever, as Chuang et al.23 noted, this quadratic scaling behavior
is at best only marginal for phantom polymers and cannot be
correct for a self-avoiding polymer. The reason is that the
equilibration time �equil�N2 for a phantom polymer and
�equil�N1+2� for a self-avoiding polymer, where � is the
Flory exponent ��=3/4 and 3/5 in two-dimensional �2D�
and three-dimensional �3D�, respectively�. Thus the exponent
for �equil is larger than two for self-avoiding polymers, im-
plying that the translocation time is shorter than the equili-
bration time of a long chain, thus rendering the concept of
equilibrium entropy and the ensuing entropic barrier inappro-
priate for the study of translocation dynamics. Chuang et
al.23 performed numerical simulations with Rouse dynamics
for a 2D lattice model to study the translocation for both
phantom and self-avoiding polymers. They decoupled the
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translocation dynamics from the diffusion dynamics outside
the pore by imposing the artificial restriction that the first
monomer, which is initially placed in the pore, is never al-
lowed to cross back out of the pore �see Fig. 1�a��.23 We will
refer to the translocation time obtained this way as �tran.
Their results show that for large N, translocation time �tran

scales approximately in the same manner as equilibration
time, but with a larger prefactor.

In the present work we consider a polymer which is
initially placed symmetrically in the middle of the pore, as in
Fig. 1�b�. In this case, without any external driving force or
restriction, the polymer escapes from the hole either to the
left or the right side of the pore in an average time defined as
the escape time �.37 It is clear that �tran and � are different.
Namely, the translocation time �tran includes events where
the middle segment reaches the center of the pore but then
the first segment returns to the entrance of the pore and the
whole translocation process begins all over again. Numeri-
cally, � can be sampled much more efficiently than �tran,
leading to a more accurate determination of the scaling be-
havior. We will show numerically that ��N1+2�, in the same
manner as found previously for �tran. Recently, Wolterrink
et al.28 have studied the translocation dynamics scaling for a
3D lattice model of a polymer. They have also found that �
scales as ��N1+2�, in agreement with the present work.

In this study, we investigate the translocation dynamics
in a 2D lattice model by focusing on �. In particular, we

investigate the effect of varying the pore length on the poly-
mer translocation. The dependence of the translocation dy-
namics on the stiffness of the polymer is also considered.
The paper is organized as follows: In Sec. II we introduce the
fluctuating bond model. In Sec. III using our approach we
examine the polymer translocation through short and long
pores. We obtain very accurate estimates for the scaling ex-
ponents as a function of N and find the scaling function
describing crossover between short and long pores. Our re-
sults are summarized in Sec. IV.

II. THE FLUCTUATING BOND MODEL

The fluctuating bond �FB� model38 combined with
single-segment Monte Carlo �MC� moves has been shown to
provide an efficient way to study many static and dynamic
properties of polymers. Here we use the 2D lattice FB model
for MC simulations of a self-avoiding polymer, where each
segment excludes four nearest and next-nearest-neighbor
sites on a square lattice. The bond lengths bl are allowed to
vary in the range 2�bl��13 in units of the lattice constant,
where the upper limit prevents bonds from crossing
each other. The stiffness of the chain is controlled through
an angle-dependent potential39,40 U /kBT=−�J /kBT�	 j=1

NFB−1

�cos���, where J is the interaction strength, NFB is the num-
ber of segments in the chain, � is the angle between two
adjacent bonds, kB is the Boltzmann constant, and T is the
absolute temperature. Dynamics is introduced in the model
by Metropolis moves of a single segment, with a probability
of acceptance min�e−	U/kBT ,1�, where 	U is the energy dif-
ference between the new and old states. As to an elementary
MC move, we randomly select a monomer and attempt to
move it onto an adjacent lattice site �in a randomly selected
direction�. If the new position does not violate the excluded-
volume or maximal bond-length restrictions, the move is ac-
cepted or rejected according to Metropolis criterion. N el-
ementary moves define one MC time step.

FIG. 1. �a� A polymer is initially placed on the one side of the wall with the
first monomer in the pore. �b� The middle of a polymer is initially placed in
the center of the pore. The length and width of the pore are L and W,
respectively.

FIG. 2. �a� Average translocation time and escape time � as a function of the chain length N. �b� A log-log plot of �a�. The length and width of the pore are
3 and 2, respectively.
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III. RESULTS AND DISCUSSION

A. Polymer translocation through a short nanopore

In this section, we present the results for the escape time
� for a lattice model of polymers. For the same model, we
also studied the translocation time �tran defined by Chuang et
al.23 using the restriction that the first monomer cannot back
out of the pore. We used the same pore size for both cases
�length of L=3 and width of w=2 lattice units�. Numerical
studies were done for a number of different chain lengths N,
with several thousand runs for each case.

In Fig. 2�a� we show the average translocation time �tran

and � as a function of the polymer length N for the case with
J=0. The log-log plot of Fig. 2�a� is shown in Fig. 2�b�.
When N
16, the results versus N follow scaling to a good
degree of accuracy. We find that �tran�N2.4±0.01. The scaling
for the escape time is ��N2.50±0.01. The result is very close to
the expected value of 1+2�=2.5 and in agreement with the
3D numerical values obtained in Ref. 28.

We have also examined � for a relatively stiff polymer,
by setting J /kBT=5.40 In Fig. 3 we show � as a function of
N. We find that ��N2.58±0.01�N1+2�, which confirms that the
stiffness of the polymer does not affect the scaling behavior
of � for single-segment dynamics.

B. Polymer translocation through a long pore

Next, we consider the influence of the pore length L on
�. In the simulations, the width of the pore is chosen as W
=7. For a successful passage through the pore of length L,
the mass center of the polymer moves a distance of L /2
+Rg, so the time it takes can be estimated to be

� �
�Rg + L/2�2

D
�


Rg
2

D
� N1+2�, L � Rg

L2

D
� N1, L � Rg.� �1�

This result indicates that there is a crossover as a function of
Rg /L such that for L�Rg, scaling follows the previous short
pore result, while for L�Rg, the scaling behavior changes to
��N. Figure 4�a� shows our numerical data, where cross-
over is clearly seen. In Fig. 4�b� we show data for a very
long pore with L=800, which confirms the linear scaling
behavior.

In general, we can write a scaling form for � as

� �
Rg

2

D
f�Rg

L
 , �2�

where f�x� is a scaling function. Using Eq. �1�, we obtain

�
D

Rg
2 � f�Rg

L
 � 
const, L � Rg

L2

Rg
2 , L � Rg. � . �3�

Using the data in Fig. 4, we plot the scaling function f�x� in
Figs. 5�a� and 5�b�. From Fig. 5�a�, we find that f�x�
�const for L�Rg, and in Fig. 5�b� we show the other limit
on a log-log scale, confirming the predicted x−2 behavior. We
note that recently Slonkina and Kdomeisky22 theoretically
examined the polymer translocation through a long pore.
Following the approach of Sung and Park16 and
Muthukumar,19 for L
Rg ,�tran��L /a−N�2 is obtained,
where a is the segment length. This result means that �tran

�L2 for L�Rg, in contrast of our prediction here for ��N in
the large L limit.

FIG. 3. Average � as a function of the chain length of stiff polymers. The
length and width of the pore are 3 and 2, respectively.

FIG. 4. �a� Average � as a function of the chain length for polymer translocation through the long pore. �b� Average � as a function of the polymer length for
short polymer translocation through a very long pore. The pore width is 7.
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A particularly interesting question concerns the influence
of the pore length to the actual translocation dynamics with
fixed N. This problem has been theoretically addressed by
Muthukumar20 who investigated the free-energy barrier and
average translocation time for the movement of a single
Gaussian chain from one sphere to another larger sphere
through pores of different lengths. In Ref. 20, it was found
that �tran�L� has a minimum for an “optimal” value of L0

where translocation is fastest, and a threshold value Lc. This
result was explained to be due to interplay between polymer
entropy and pore-polymer interaction energy. In the first re-
gime where L�Lc ,�tran�L� first decreases and then increases
with L, the entropic barrier mechanism dominates polymer
translocation. In the other regime L
Lc ,�tran�L� increases
with L, and polymer translocation is controlled by the pore-
polymer interaction. The existence of Lc thus corresponds to
an apparent cancellation between the gain in translocation
rate arising from the entropic part and the loss in the rate
associated with the pore-polymer interaction.

In Fig. 6 we show our numerical data for a fixed chain of
length N=51. Most strikingly, our result shows that the two
regimes for the dependence of � on the pore length are
present here without any explicit pore-polymer interaction

potential. Thus, the existence of an optimal pore length is a
generic phenomenon in polymer translocation. We find that
the optimal value of L0, corresponds to the radius of gyration
of the polymer along the pore direction, R�. The escape of the
polymer consists of two steps. In the first step with average
duration �1, one end of the polymer reaches an edge of the
pore. During the second step of average duration �2, the other
end of the polymer reaches this edge of the pore. For L

L0 ,�1=�1�L� increases with L because the polymer has to
move a longer distance for increasing L, and �2=�2�N� de-
pends on the chain length N, but is almost independent of the
pore length. Thus the total time, �=�1�L�+�2�N�, increases
with L. For L�L0 ,� goes down with increasing L. Further
support for the existence of an optimal pore length comes
from the results of Slonkina and Kolomeisky22 for an ideal
polymer where a minimum translocation time occurs at L0

=Na. Our simulation results show that L0�R�, but for nar-
row enough pore R� �Na.

IV. CONCLUSION

In this paper, the polymer translocation through a nan-
opore in the absence of an external driving force is examined
both theoretically and numerically. To overcome the entropic
barrier, we consider the translocation dynamics of a polymer
that is initially placed in the middle of the pore in a symmet-
ric position, instead of using a restriction that the first mono-
mer is never allowed to crossing back out of the pore. Our
numerical results show that accurate estimates for the scaling
exponents of the escape time as a function of N are obtained.
Our theory predicts that the length of the pore plays a very
important role in polymer translocation dynamics. For L
�Rg, the escape time � with polymer length N satisfies �
�N1+2�, while for L�Rg ,��N is observed. We also numeri-
cally find the scaling function describing crossover between
short and long pores and show that � has a minimum as a
function of L for longer chains. In addition, our numerical
results show that the stiffness of a polymer does not change
the scaling behavior of translocation dynamics.

FIG. 5. �a� Scaling function for polymer escape through a long pore. �b� A log-log plot of �a�.

FIG. 6. �a� The effect of the pore length L on average � for chain of length
N=51. The pore width is 7.
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