82 research outputs found

    School students’ knowledge and understanding of the Global Solar Ultraviolet Index

    Get PDF
    Background. The Global Solar Ultraviolet Index (UVI) is a health communication tool used to inform the  public about the health risks of excess solar UV radiation and encourage appropriate sun-protection  behaviour. Knowledge and understanding of the UVI has been evaluated among adult populations but not  among school students.Objectives. To draw on previously unpublished data from two school-based studies, one in New Zealand (NZ) and the other in South Africa (SA), to investigate and compare students’ knowledge of the UVI and, where possible, report their understanding of UVI.Methods. Cross-sectional samples of schoolchildren in two countries answered questions on whether  they had seen or heard of the UVI and questions aimed at probing their understanding of this measure.Results. Self-report questionnaires were completed by 1 177 students, comprising 472 NZ (264 year 8  (Y8), 214 year 4 (Y4) students) and 705 SA grade 7 primary-school students aged 8 - 13 years. More than half of the NZ Y8 students answered that they had previously heard about or seen the UVI, whereas  significantly more SA students and NZ Y4 students replied that they had neither seen nor heard about the UVI. Among the NZ students who had seen or heard of the UVI, understanding of the tool was fairly good.Conclusion. The observed lack of awareness among many students in both countries provides an  opportunity to introduce an innovative and age-appropriate UVI communication method that combines  level of risk with behavioural responses to UVI categories and focus on personal relevance to the UVI message

    Study protocol for First Dental Steps Intervention: feasibility study of a health visitor led infant oral health improvement programme.

    Get PDF
    BACKGROUND: Dental caries in childhood is a burden on the daily lives of children and their families, and associated with poor oral health in adulthood. In England, dental caries is the most common reason for young children to be admitted to hospital. It is believed that most tooth extractions (due to decay) for children aged 10 years and under, could be avoided with improved prevention and early management. National public health policy recommendations in England include specific oral health initiatives to tackle tooth decay. One of these initiatives is delivered as part of the Healthy Child Programme and includes providing workforce training in oral health, integrating oral health advice into home visits, and the timely provision of fluoride toothpaste. This protocol seeks to assess the delivery of the First Dental Steps intervention and uncertainties related to the acceptability, recruitment, and retention of participants. METHODS: This study seeks to explore the feasibility and acceptability of the First Dental Steps intervention and research methods. First Dental Steps intervention will be delivered in local authority areas in South West England and includes oral health training for health visitors (or community nursery nurses) working with 0-5-year-olds and their families. Further, for vulnerable families, integrating oral health advice and the provision of an oral health pack (including a free flow cup, an age appropriate toothbrush, and 1450 ppm fluoride toothpaste) during a mandated check by a health visitor. In this study five local authority areas will receive the intervention. Interviews with parents receiving the intervention and health visitors delivering the intervention will be undertaken, along with a range of additional interviews with stakeholders from both intervention and comparison sites (four additional local authority areas). DISCUSSION: This protocol was written after the start of the COVID-19 pandemic, as a result, some of the original methods were adjusted specifically to account for disruptions caused by the pandemic. Results of this study will primarily provide evidence on the acceptability and feasibility of both the First Dental Steps intervention and the research methods from the perspective of both families and stakeholders

    A randomised controlled trial for the effectiveness of intra-articular Ropivacaine and Bupivacaine on pain after knee arthroscopy: the DUPRA (DUtch Pain Relief after Arthroscopy)-trial

    Get PDF
    In this double-blinded, randomised clinical trial, the aim was to compare the analgesic effects of low doses of intra-articular Bupivacaine and Ropivacaine against placebo after knee arthroscopy performed under general anaesthesia. A total of 282 patients were randomised to 10 cc NaCl 0.9%, 10 cc Bupivacaine 0.5% or 10 cc Ropivacaine 0.75%. Patients received the assigned therapy by intra-articular injection after closure of the portal. Pain and satisfaction were measured at one, 4 h and 5-7 days after arthroscopy with Numerical Rating Scale (NRS) -scores. NSAID consumption was also recorded. One-h NRS-scores at rest were higher in the NaCl group compared with the Bupivacaine group (P <0.01), 1 h NRS-scores in flexion were higher in the NaCl group compared with the Bupivacaine (P <0.01) and Ropivacaine (P <0.01) groups. NRS-satisfaction at 4 h was higher for the Bupivacaine group compared with the NaCl group (P = 0.01). Differences in NRS-scores were significant but low in magnitude. NSAID consumption was lower in the Bupivacaine group compared with the NaCl group (P <0.01). The results of this randomised clinical trial demonstrate improved analgesia after administration of low doses of intra-articular Bupivacaine and Ropivacaine after arthroscopy of the knee. Considering reports of Bupivacaine and Ropivacaine being chondrotoxic agents and the relatively small improvement on patient comfort found in this trial, it is advised to use systemic anaesthetic instead of intra-articular Bupivacaine or Ropivacaine for pain relief after knee arthroscopy.

    Transcriptional and Post-Transcriptional Regulation of SPAST, the Gene Most Frequently Mutated in Hereditary Spastic Paraplegia

    Get PDF
    Hereditary spastic paraplegias (HSPs) comprise a group of neurodegenerative disorders that are characterized by progressive spasticity of the lower extremities, due to axonal degeneration in the corticospinal motor tracts. HSPs are genetically heterogeneous and show autosomal dominant inheritance in ∼70–80% of cases, with additional cases being recessive or X-linked. The most common type of HSP is SPG4 with mutations in the SPAST gene, encoding spastin, which occurs in 40% of dominantly inherited cases and in ∼10% of sporadic cases. Both loss-of-function and dominant-negative mutation mechanisms have been described for SPG4, suggesting that precise or stoichiometric levels of spastin are necessary for biological function. Therefore, we hypothesized that regulatory mechanisms controlling expression of SPAST are important determinants of spastin biology, and if altered, could contribute to the development and progression of the disease. To examine the transcriptional and post-transcriptional regulation of SPAST, we used molecular phylogenetic methods to identify conserved sequences for putative transcription factor binding sites and miRNA targeting motifs in the SPAST promoter and 3′-UTR, respectively. By a variety of molecular methods, we demonstrate that SPAST transcription is positively regulated by NRF1 and SOX11. Furthermore, we show that miR-96 and miR-182 negatively regulate SPAST by effects on mRNA stability and protein level. These transcriptional and miRNA regulatory mechanisms provide new functional targets for mutation screening and therapeutic targeting in HSP

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute
    corecore