48 research outputs found

    Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans

    Get PDF
    AbstractNociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior–lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate

    Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    Get PDF
    Background: Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding,35uC and also senses changes in its environmental temperature in the range between 15 and 25uC. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings: We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicinsensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance: Our results identify distinct thermal responses mediated by a single neuron, but also show tha

    The Relationship Between Mental Health Problems, Acculturative Stress, and Academic Performance in Latino English Language Learner Adolescents

    No full text
    Latino adolescents, especially English language learners (ELLs) are considered to be a highly vulnerable group in our schools today. Despite their apparent need for additional social-emotional and academic learning (SEAL) supports, there is very little research to inform the type of cultural modifications (if any) needed to make SEAL interventions more appropriate for this population. Accordingly, this study focused on identifying the effects of acculturative stress (a culturally specific stressor) and general mental health problems on students' academic performance. More specifically, this study aimed to identify which factor (mental health problems or acculturative stress) best explains Latino adolescent ELLs' academic performance. This study defined mental health problems as being comprised of internalizing and externalizing symptoms and acculturative stress as being comprised of perceived discrimination, immigration related stress, parent-child acculturative gap, and school belonging. Hierarchical multiple regression was used to examine the effects of mental health problems and acculturative stress on the academic performance of Latino adolescents. Although both mental health problems and acculturative stress explained significant variance in academic performance, acculturative stress was the stronger contributing variable. Interactions between ELL status and mental health problems and ELL status and acculturative stress were examined to determine whether ELL status influenced the degree to which these two contributing constructs explained academic performance. Non-significant interactions between ELL status and mental health problems and ELL status and acculturative stress suggest that ELL status was not a moderating factor. Although ELL status was not a moderating factor in the relationship between acculturative stress and academic performance, independent sample t-tests suggest that acculturative stress levels were significantly higher for Latino adolescent ELLs than for Latino adolescent non-ELLs. The results of this study suggest that while generic mental health problems are still important to address in SEAL interventions for Latino students, it may be of equal or even more importance to also address acculturative stress. Addressing acculturative stress in SEAL interventions for ELLs has been supported by the results of this study and previous research

    LDH-A—Modulation and the Variability of LDH Isoenzyme Profiles in Murine Gliomas: A Link with Metabolic and Growth Responses

    No full text
    Three murine glioma cell lines (GL261, CT2A, and ALTS1C1) were modified to downregulate the expression of the murine LDH-A gene using shRNA, and compared to shRNA scrambled control (NC) cell lines. Differences in the expression of LDH-A and LDH-B mRNA, protein and enzymatic activity, as well as their LDH isoenzyme profiles, were observed in the six cell lines, and confirmed successful LDH-A KD. LDH-A KD (knock-down) resulted in metabolic changes in cells with a reduction in glycolysis (GlycoPER) and an increase in basal respiratory rate (mitoOCR). GL261 cells had a more limited ATP production capacity compared to CT2A and ALTS1C1 cells. An analysis of mRNA expression data indicated that: (i) GL261 LDH-A KD cells may have an improved ability to metabolize lactate into the TCA cycle; and (ii) that GL261 LDH-A KD cells can upregulate lipid metabolism/fatty acid oxidation pathways, whereas the other glioma cell lines do not have this capacity. These two observations suggest that GL261 LDH-A KD cells can develop/activate alternative metabolic pathways for enhanced survival in a nutrient-limited environment, and that specific nutrient limitations have a variable impact on tumor cell metabolism and proliferation. The phenotypic effects of LDH-A KD were compared to those in control (NC) cells and tumors. LDH-A KD prolonged the doubling time of GL261 cells in culture and prevented the formation of subcutaneous flank tumors in immune-competent C57BL/6 mice, whereas GL261 NC tumors had a prolonged growth delay in C57BL/6 mice. In nude mice, both LDH-A KD and NC GL261 tumors grew rapidly (more rapidly than GL261 NC tumors in C57BL/6 mice), demonstrating the impact of an intact immune system on GL261 tumor growth. No differences between NC and KD cell proliferation (in vitro) or tumor growth in C57BL/6 mice (doubling time) were observed for CT2A and ALTS1C1 cells and tumors, despite the small changes to their LDH isoenzyme profiles. These results suggest that GL261 glioma cells (but not CT2A and ALTS1C1 cells) are pre-programmed to have the capacity for activating different metabolic pathways with higher TCA cycle activity, and that this capacity is enhanced by LDH-A depletion. We observed that the combined impact of LDH-A depletion and the immune system had a significant impact on the growth of subcutaneous-located GL261 tumors
    corecore