757 research outputs found

    The York map as a Shanmugadhasan canonical transformation in tetrad gravity and the role of non-inertial frames in the geometrical view of the gravitational field

    Get PDF
    A new parametrization of the 3-metric allows to find explicitly a York map in canonical ADM tetrad gravity, the two pairs of physical tidal degrees of freedom and 14 gauge variables. These gauge quantities (generalized inertial effects) are all configurational except the trace 3K(τ,σ⃗){}^3K(\tau ,\vec \sigma) of the extrinsic curvature of the instantaneous 3-spaces Στ\Sigma_{\tau} (clock synchronization convention) of a non-inertial frame. The Dirac hamiltonian is the sum of the weak ADM energy EADM=∫d3σEADM(τ,σ⃗)E_{ADM} = \int d^3\sigma {\cal E}_{ADM}(\tau ,\vec \sigma) (whose density is coordinate-dependent due to the inertial potentials) and of the first-class constraints. Then: i) The explicit form of the Hamilton equations for the two tidal degrees of freedom in an arbitrary gauge: a deterministic evolution can be defined only in a completely fixed gauge, i.e. in a non-inertial frame with its pattern of inertial forces. ii) A general solution of the super-momentum constraints, which shows the existence of a generalized Gribov ambiguity associated to the 3-diffeomorphism gauge group. It influences: a) the explicit form of the weak ADM energy and of the super-momentum constraint; b) the determination of the shift functions and then of the lapse one. iii) The dependence of the Hamilton equations for the two pairs of dynamical gravitational degrees of freedom (the generalized tidal effects) and for the matter, written in a completely fixed 3-orthogonal Schwinger time gauge, upon the gauge variable 3K(τ,σ⃗){}^3K(\tau ,\vec \sigma), determining the convention of clock synchronization. Therefore it should be possible (for instance in the weak field limit but with relativistic motion) to try to check whether in Einstein's theory the {\it dark matter} is a gauge relativistic inertial effect induced by 3K(τ,σ⃗){}^3K(\tau ,\vec \sigma).Comment: 90 page

    Implementing Parallel Differential Evolution on Spark

    Get PDF
    [Abstract] Metaheuristics are gaining increased attention as an efficient way of solving hard global optimization problems. Differential Evolution (DE) is one of the most popular algorithms in that class. However, its application to realistic problems results in excessive computation times. Therefore, several parallel DE schemes have been proposed, most of them focused on traditional parallel programming interfaces and infrastruc- tures. However, with the emergence of Cloud Computing, new program- ming models, like Spark, have appeared to suit with large-scale data processing on clouds. In this paper we investigate the applicability of Spark to develop parallel DE schemes to be executed in a distributed environment. Both the master-slave and the island-based DE schemes usually found in the literature have been implemented using Spark. The speedup and efficiency of all the implementations were evaluated on the Amazon Web Services (AWS) public cloud, concluding that the island- based solution is the best suited to the distributed nature of Spark. It achieves a good speedup versus the serial implementation, and shows a decent scalability when the number of nodes grows.[Resumen] Las metaheurísticas están recibiendo una atención creciente como técnica eficiente en la resolución de problemas difíciles de optimización global. Differential Evolution (DE) es una de las metaheurísticas más populares, sin embargo su aplicación en problemas reales deriva en tiempos de cómputo excesivos. Por ello se han realizado diferentes propuestas para la paralelización del DE, en su mayoría utilizando infraestructuras e interfaces de programación paralela tradicionales. Con la aparición de la computación en la nube también se han propuesto nuevos modelos de programación, como Spark, que permiten manejar el procesamiento de datos a gran escala en la nube. En este artículo investigamos la aplicabilidad de Spark en el desarrollo de implementaciones paralelas del DE para su ejecución en entornos distribuidos. Se han implementado tanto la aproximación master-slave como la basada en islas, que son las más comunes. También se han evaluado la aceleración y la eficiencia de todas las implementaciones usando el cloud público de Amazon (AWS, Amazon Web Services), concluyéndose que la implementación basada en islas es la más adecuada para el esquema de distribución usado por Spark. Esta implementación obtiene una buena aceleración en relación a la implementación serie y muestra una escalabilidad bastante buena cuando el número de nodos aumenta.[Resume] As metaheurísticas están recibindo unha atención a cada vez maior como técnica eficiente na resolución de problemas difíciles de optimización global. Differential Evolution (DE) é unha das metaheurísticas mais populares, ainda que a sua aplicación a problemas reais deriva en tempos de cómputo excesivos. É por iso que se propuxeron diferentes esquemas para a paralelización do DE, na sua maioría utilizando infraestruturas e interfaces de programación paralela tradicionais. Coa aparición da computación na nube tamén se propuxeron novos modelos de programación, como Spark, que permiten manexar o procesamento de datos a grande escala na nube. Neste artigo investigamos a aplicabilidade de Spark no desenvolvimento de implementacións paralelas do DE para a sua execución en contornas distribuidas. Implementáronse tanto a aproximación master-slave como a baseada en illas, que son as mais comúns. Tamén se avaliaron a aceleración e a eficiencia de todas as implementacións usando o cloud público de Amazon (AWS, Amazon Web Services), tirando como conclusión que a implementación baseada en illas é a mais acaida para o esquema de distribución usado por Spark. Esta implementación obtén unha boa aceleración en relación á implementación serie e amosa unha escalabilidade bastante boa cando o número de nos aumenta.Ministerio de Economía y Competitividad; DPI2014-55276-C5-2-RXunta de Galicia; GRC2013/055Xunta de Galicia; R2014/04

    Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography

    Get PDF
    Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fuorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the frst detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a signifcant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.Kansas State University (KSU) S15192.01University of Granada, USDA-NIFA S15192.01 2014-70016-2302

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n→1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n−1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    Generation Gap and the Impact of the Web on Goods Quality Perceptions

    Get PDF
    This study explores how age and general online shopping experience affect consumer perceptions on product quality uncertainty. Using the survey data collected from 549 consumers, we investigated how they perceive the uncertainty of product quality on six search, experience and credence goods. The ANOVA results show that age and the Web shopping experience of consumers are significant factors. A generation gap is indeed seen for all but one experience good. Web shopping experience is not a significant factor for search goods but is for experience and credence goods. There is an interaction effect between age and Web shopping experience for one credence good. Implications of these results are discussed

    Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge

    Get PDF
    We define the {\it rest-frame instant form} of tetrad gravity restricted to Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of gauge transformations generated by the 14 first class constraints of the theory, we define and solve the multitemporal equations associated with the rotation and space diffeomorphism constraints, finding how the cotriads and their momenta depend on the corresponding gauge variables. This allows to find quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal gauges and to find the Dirac observables for superspace in these gauges. The construction of the explicit form of the transformation and of the solution of the rotation and supermomentum constraints is reduced to solve a system of elliptic linear and quasi-linear partial differential equations. We then show that the superhamiltonian constraint becomes the Lichnerowicz equation for the conformal factor of the 3-metric and that the last gauge variable is the momentum conjugated to the conformal factor. The gauge transformations generated by the superhamiltonian constraint perform the transitions among the allowed foliations of spacetime, so that the theory is independent from its 3+1 splittings. In the special 3-orthogonal gauge defined by the vanishing of the conformal factor momentum we determine the final Dirac observables for the gravitational field even if we are not able to solve the Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted to this completely fixed gauge.Comment: RevTeX file, 141 page

    A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Cluster Computing. The final authenticated version is available online at: https://doi.org/10.1007/s10586-017-0860-1[Abstract] Metaheuristics are gaining increasing recognition in many research areas, computational systems biology among them. Recent advances in metaheuristics can be helpful in locating the vicinity of the global solution in reasonable computation times, with Differential Evolution (DE) being one of the most popular methods. However, for most realistic applications, DE still requires excessive computation times. With the advent of Cloud Computing effortless access to large number of distributed resources has become more feasible, and new distributed frameworks, like Spark, have been developed to deal with large scale computations on commodity clusters and cloud resources. In this paper we propose a parallel implementation of an enhanced DE using Spark. The proposal drastically reduces the execution time, by means of including a selected local search and exploiting the available distributed resources. The performance of the proposal has been thoroughly assessed using challenging parameter estimation problems from the domain of computational systems biology. Two different platforms have been used for the evaluation, a local cluster and the Microsoft Azure public cloud. Additionally, it has been also compared with other parallel approaches, another cloud-based solution (a MapReduce implementation) and a traditional HPC solution (a MPI implementation)Ministerio de Economía y Competitividad; DPI2014-55276-C5-2-RMinisterio de Economía y Competitividad; TIN2013-42148-PMinisterio de Economía y Competitividad; TIN2016-75845-PXunta de Galicia ; R2016/045Xunta de Galicia; GRC2013/05

    Early Origin for Human-Like Precision Grasping: A Comparative Study of Pollical Distal Phalanges in Fossil Hominins

    Get PDF
    Altres ajuts: Generalitat de Catalunya 2006 FI 00065 i beca de viatge 2008 BE1 00370Background: The morphology of human pollical distal phalanges (PDP) closely reflects the adaptation of human hands for refined precision grip with pad-to-pad contact. The presence of these precision grip-related traits in the PDP of fossil hominins has been related to human-like hand proportions (i.e. short hands with a long thumb) enabling the thumb and finger pads to contact. Although this has been traditionally linked to the appearance of stone tool-making, the alternative hypothesis of an earlier origin-related to the freeing of the hands thanks to the advent of terrestrial bipedalism-is also possible given the human-like intrinsic hand proportion found in australopiths. - Methodology/Principal Findings: We perform morphofunctional and morphometric (bivariate and multivariate) analyses of most available hominin pollical distal phalanges, including Orrorin, Australopithecus, Paranthropous and fossil Homo, in order to investigate their morphological affinities. Our results indicate that the thumb morphology of the early biped Orrorin is more human-like than that of australopiths, in spite of its ancient chronology (ca. 6 Ma). Moreover, Orrorin already displays typical human-like features related to precision grasping. - Conclusions: These results reinforce previous hypotheses relating the origin of refined manipulation of natural objects-not stone tool-making-with the relaxation of locomotor selection pressures on the forelimbs. This suggests that human hand length proportions are largely plesiomorphic, in the sense that they more closely resemble the relatively short-handed Miocene apes than the elongated hand pattern of extant hominoids. With the advent of terrestrial bipedalism, these hand proportions may have been co-opted by early hominins for enhanced manipulative capabilities that, in turn, would have been later co-opted for stone tool-making in the genus Homo, more encephalized than the previous australopiths. This hypothesis remains may be further tested by the finding of more complete hands of unequivocally biped early hominins
    • …
    corecore