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Abstract Metaheuristics are gaining increasing recog-

nition in many research areas, computational systems

biology among them. Recent advances in metaheuris-

tics can be helpful in locating the vicinity of the global

solution in reasonable computation times, with Differ-

ential Evolution (DE) being one of the most popular

methods. However, for most realistic applications, DE

still requires excessive computation times. With the

advent of Cloud Computing effortless access to large

number of distributed resources has become more fea-

sible, and new distributed frameworks, like Spark, have

been developed to deal with large scale computations on

commodity clusters and cloud resources. In this paper

we propose a parallel implementation of an enhanced

DE using Spark. The proposal drastically reduces the

execution time, by means of including a selected lo-

cal search and exploiting the available distributed re-

sources. The performance of the proposal has been

thoroughly assessed using challenging parameter esti-

mation problems from the domain of computational

systems biology. Two different platforms have been

used for the evaluation, a local cluster and the Microsoft

Azure public cloud. Additionally, it has been also com-

pared with other parallel approaches, another cloud-

based solution (a MapReduce implementation) and a

traditional HPC solution (a MPI implementation).
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1 Introduction

Many key problems in computational systems biology

can be formulated and solved using global optimization

techniques. The development of dynamic (kinetic) mod-

els is one of the current key issues in the field. Dynam-

ics, usually represented as sets of nonlinear ordinary dif-

ferential equations models, are used to explain function

in biological systems. In recent years, research has been

focused on scaling-up these kinetic models [2,19,20,31],

from medium and large-scale up to the level of whole-

cell models [17]. In this context, the problem of param-

eter estimation (model calibration) remains as a very

challenging task [7,16]. Global optimization methods

can be used to solve this type of problems. In particu-

lar, methods based on heuristics, and their combination

(hybrids) with more traditional approaches, have shown

promising results [4,5,34]. In any case, the complexity

of the underlying models requires the use of efficient

solvers to achieve adequate results in reasonable com-

putation times. Differential Evolution (DE) [33] is one

of the most popular methods, and it has been success-

fully used in many different areas [10]. However, in most

realistic applications, this population-based method re-

quires a very large number of evaluations (and there-

fore, large computation time) to obtain an acceptable

result. Hence, different parallel DE schemes have been

proposed, most of them focused on traditional parallel

programming interfaces and infrastructures.

Recently, Cloud Computing has emerged as a new

paradigm for on-demand delivery of computing resources.

However, scientific computing community has been quite

hesitant in using the cloud, simply because the tradi-

tional programming models do not fit well with the

new paradigm. Furthermore, earliest cloud program-

ming models, like MapReduce [11], do not allow most
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scientific computations being efficiently run in the cloud.
However more recent proposals like Spark [46] or Flink [15]
have added improved support for iterative algorithms
which, at first, make them more promising in executing
scientific codes efficiently on cloud resources.

Two are the main objectives of this contribution.
The first aim is to obtain a cloud-based implementa-
tion of the DE algorithm that achieves a good trade-off
between exploration (diversification or global search)
and exploitation (intensification or local search). This
balance is at the core of modern metaheuristics [41].
To this end, a local search and a tabu list have been
included to enhance the performance of DE in param-
eter estimation problems in systems biology. The sec-
ond aim is to thoroughly assess the performance of the
proposal using different infrastructures, such as a local
cluster and a public cloud. The evaluation includes also
a comparison with other parallel approaches: another
cloud-based implementation using MapReduce, and a
traditional HPC implementation using MPI. Thus, the
results obtained in this paper can be particularly useful,

not only for the computational systems biology com-
munity, but also for those interested in the potential of
new cloud distributed frameworks for developing novel

parallel metaheuristic methods. To this end, the source
code is made publicly available.

The organization of the paper is as follows. Sec-

tion 2 discusses related work. Section 3 presents a brief
overview of the DE and the new features included in the
proposal to improve the search. The Spark implementa-
tion of the proposed enhanced parallel DE is described

in Section 4. Section 5 assesses the performance of the
proposal. Finally, Section 6 concludes the paper.

2 Related Work

This section covers different approaches that follow any 
of the strategies explored in this work. First, we list 
different works that contribute to improve the perfor-
mance of the classical DE algorithm either by means of 
modifications to enhance the original algorithm, or 
through parallel implementations of the DE. Note that 
the number of researches in this field is significant, thus, 
here we focus on those that relate more closely to the 
enhancements included in our proposal. Then, we briefly 
describe the few cloud-based proposals, focal point of 
this work, existing in the literature.

Many researches have tried to improve DE by propos-

ing modifications to enhance the original algorithm. In-
teresting reviews can be found in [10,9]. In several cases,
the original DE algorithm was improved with additional
algorithmic components exploiting certain aspects of a
given class of problems. In [45] a modified DE approach

is proposed to improve the search performance by us-
ing generation-varying control parameters to prevent
premature convergence to local minima. A hybrid al-
gorithm using DE as an evolutionary framework and
a crossover-based local search was proposed in [25,26].
A DE with Scale Factor Local Search was introduced
in [40,24] for self-adaptive DE schemes. The use of a
tabu list in the DE has also been applied in recent
works [32,18,30].

On the other hand, several studies have considered 
parallel versions of DE, most of them focused on tradi-
tional parallel programming interfaces and infrastruc-
tures. We focus here on those approaches following an 
island-based model. A parallel synchronous approach 
was proposed in [36]. It is based on the distribution of 
the population data among different processors which 
communicate through data migrations and are man-
aged by a central processor. Being implemented with 
synchronous communications, this proposal leads to low 
speedup results. A simple approach was also proposed 
in [27], consisting also of a master-slave architecture 
with several independent processes, which communi-
cate through the filesystem. A more recent distributed 
DE implementation was presented in [3] exploiting an 
island-model with asynchronous communications.

Several other works studied improvements to island-

model schemes. In [29], a complete study about the
impact on the performance of different communication
topologies between the islands was presented. Several
studies suggest that randomization of the control pa-

rameters can be a propitious mechanism for enhanc-
ing the DE performance [6]. Different randomization
schemes have been proposed to develop self-adaptive

DE frameworks and investigate the effect of changing
control parameters in distributed DE [47,44]. Two mech-
anisms to avoid the loss of diversity when the size of the
population is small are described in [43]. The first one
was based on shuffling: the individuals from a specific
subpopulation were randomly reorganized. The second
one, an update mechanism, changed and adapted scal-
ing factors for each subpopulation. The results indicate
that these techniques obtain a very significant perfor-
mance when the dimensionality of the functions grow.

Research on cloud-oriented parallel metaheuristics,
based mainly on the use of MapReduce, has also re-
ceived increasing attention in recent years. Some pro-
posals investigate how to apply MapReduce to paral-
lelize the DE algorithm to be used in the Cloud. In [48]
the fitness evaluation in the DE algorithm is performed
in parallel using Hadoop (the well-known open-source
MapReduce framework). However, the experimental re-
sults reveal that the extra cost of Hadoop DFS I/O op-
erations and the system bookkeeping overhead signifi-
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Table 1: Overview of the cloud-based DE proposals described in the related work.
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Zhou et al. [48] 4 4 4 4
Tagawa et al. [35] 4 4 4 4
Daoudi et al. [8] 4 4 4 4
Deng et al. [12] 4 4 4 4
Teijeiro et al. [37] 4 4 4 4 4

eSiPDE 4 4 4 4 4 4

cantly reduces the benefits of the parallelization. In [35],
a concurrent implementation of the DE steady-state
model based on MapReduce is proposed. However, the
way the population is accessed limits its applicability
to shared-memory architectures. In [8] a parallel im-
plementation of DE based clustering using MapReduce

is also proposed. This algorithm was implemented in
three levels, each consisting of different DE operations.

An attempt to parallelize the DE algorithm using

Spark was presented in [12]. However, in that work only
the computation of the fitness values of the individu-
als is performed in parallel following a master-slave ap-

proach. An entire parallelization of the DE algorithm
with Spark was explored in [37]. In that paper Spark-
based implementations of two different parallel schemes
of the DE algorithm, the master-slave and the island-

based, were proposed and evaluated. Results showed
that the island-based scheme is by far the best suited
to the distributed nature of Spark. A thorough evalu-

ation of the Spark-based island implementation can be
found in [38]. It has been also compared in [39] with
a MapReduce implementation, concluding that Spark

outperforms MapReduce in this kind of iterative algo-
rithms.

Table 1 summarizes the main features of the cloud-

based DE proposals commented above, specifying: the
algorithm model, the strategy followed in the paral-
lelization, the inclusion of further optimizations to the
basic DE algorithm, the distributed framework used,
and the infrastructure where the evaluations have been
performed. Our proposal (called eSiPDE) is also in-
cluded in the table. There are two main contributions
in this work with respect to our previous proposals [37–
39]. First, we include further optimizations, a local search
and a tabu list, to improve the convergence of the Spark-
based island parallel DE. Second, we further compare
the new enhanced DE algorithm with other parallel
approaches: another cloud-based implementation using

MapReduce and a traditional HPC implementation us-
ing MPI.

3 Differential Evolution

Differential Evolution (DE) [33] is an iterative muta-
tion algorithm where vector differences are used to cre-
ate new candidate solutions. Starting from an initial
population matrix composed of NP D-dimensional so-
lution vectors (individuals), DE attempts to achieve the

optimal solution iteratively through changes in its vec-
tors. Algorithm 1 shows the basic pseudocode for the
DE algorithm. New individuals are generated in the
population matrix, in each iteration, through opera-

tions (crossover - CR; mutation - F) performed among
individuals of the matrix. Old solutions are replaced
only when the fitness value of the objective function is

better than the current one. A population matrix with
optimized individuals is obtained as output of the al-
gorithm. The best of these individuals are selected as

solution close to optimal for the objective function of
the model.

However, typical runtimes for many realistic prob-
lems are in the range from hours to days due to the
large number of objective function evaluations needed,
making the performance of the classical sequential DE
unacceptable. Therefore, in order to improve the run-

time of the DE algorithm, two main strategies have
been explored. First, exploiting parallelism so as to re-
duce the computational time needed and to improve
global search through diversification. Second, including
a selected local search to enhance the method through
intensification, drastically reducing the number of eval-
uations required.

3.1 Improving global search with a parallel
cooperative scheme

The parallelization proposed in this work pursues the
development of an efficient parallel variant of the serial
DE. It accelerates the computation by performing sep-
arate evaluations in parallel. Besides, it also improves
the convergence by stimulating the diversification in
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the search and the cooperation between the parallel

threads.

In the literature, different parallel models can be

found [1] aiming to improve both the computational

time and the number of iterations for convergence. The

master-slave and the island-based models are the most

popular. In the master-slave model the behaviour of the

sequential DE is preserved by parallelizing the inner-

loop of the algorithm, where a master processor dis-

tributes computations among the slave processors. The

implementation of the DE master-slave model does not

fit well with the distributed nature of frameworks like

Spark [37]. The reason is that when the mutation strat-

egy is applied to each individual, random different indi-

viduals have to be selected from the whole population.

Considering that the population would certainly be par-

titioned and distributed among slaves, any solution to

this problem would introduce an unfeasible communi-

cations overhead.

In the island-based model the population matrix is

divided into subpopulations (islands) where the algo-

rithm is executed isolated. Sparse individual exchanges

are performed among islands to introduce diversity into

the subpopulations. Thereby, the search avoids stag-

nation in local optima. Although the implementation

of the island-based model in Spark drastically reduces

the communications between islands, the scalability is

heavily restrained by the small size of the DE popula-

tion matrix. Thus, founded on the ideas outlined in [28],

Algorithm 1: Differential Evolution algorithm

(seqDE)

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element i of the P matrix do

choose randomly different r1, r2, r3 ∈ [1, NP ]
choose randomly an integer jr ∈ [1, D]
for j ← 1 to D do

choose a randomly real r ∈ [0, 1]
if r ≤ CR or j = jr then

uG+1
i (j)← xGr1(j)+F ·(xGr2(j)−xGr3(j))

else

uG+1
i (j)← xGi (j)

end

end

evaluate (uG+1
i )

if f(uG+1
i ) < f(xGi ) then

xG+1
i ← uG+1

i
else

xG+1
i ← xGi

end

end

until Stop conditions;

the island-based model can be used to perform a dif-

ferent DE in each island. A different population matrix

and different combinations of CR and F values are used

in each island to enhance diversity. These islands coop-

erate through sparse migrations, therefore modifying

the systemic properties of the individual searches.

3.2 Enhancing DE with local search and tabu list

Hybrid methods, that combine global with local search,

have a long tradition in numerical optimization. In or-

der to improve the computational effort required by the

DE algorithm a local search has been added, thus, re-

ducing the number of objective function evaluations re-

quired. The local search moves from solution to solu-

tion in the space of candidate solutions, applying local

changes until an optimal solution is found or a time

bound is elapsed. Different local solvers should be cho-

sen to fit better with the problem at hand. In this work

the NL2SOL [13] is used. NL2SOL is a method for solv-

ing non-linear least-squares problems that has demon-

strated to be particularly effective for parameter esti-

mation problems [14,28].

One drawback of local search is that it tends to be-

come stuck in suboptimal regions. To avoid this prob-

lem, the concept of tabu list is introduced in the algo-

rithm. Tabu search enhances the performance of local

methods by avoiding revisits to the same place dur-

ing the search. This is achieved using memory struc-

tures that keep track of the visited solutions. If the

vicinity of a potential solution has been previously vis-

ited within a certain short-term period it is marked as

tabu. As a result, the algorithm does not consider that

solution again. This technique improves the diversity

among members of the population, and consequently

contributes to the computational efficiency of the algo-

rithm.

In the next section the proposed implementation of

the enhanced Spark-based parallel DE is described in

detail.

4 Enhanced Spark-based Parallel Differential

Evolution

To understand the enhanced Spark-based parallel

implementation of the DE algorithm, some previous in-

sight into the way data is distributed and processed

by Spark is needed. Spark uses the resilient distributed

dataset (RDD) abstraction to represent fault-tolerant

distributed data. RDDs are immutable sets of records

that optionally can be in the form of key-value pairs.
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Spark programs are run by a driver (the master in Spark

terminology) which partitions RDDs and distributes

the partitions to workers (the slaves in Spark terminol-

ogy). The workers persist and transform the data and

return results to the driver. There is no communication

among workers. Shuffle operations (i.e. join, groupBy)

that need data movement among workers through the

network are expensive and should be avoided.

Our enhanced Spark-based parallel DE implemen-

tation (eSiPDE) follows the scheme shown in Figure 1.

In the figure, boxes with solid outlines are RDDs. Parti-

tions are shaded rectangles, darker if they are persistent

in memory. A key-value pair RDD has been used to rep-

resent the population where each individual is uniquely

identified by its key. There are two execution flows that

run asynchronously in different threads of the Spark

driver. The main flow is a version of the island-based

parallel DE implementation (SiPDE) described in [37].

It has been modified in this work to allow for hetero-

geneous islands, and also to incorporate the result of a

local search into the islands using a substitution strat-

egy. The secondary flow executes an asynchronous local

search on the best individual, found up to that moment,

that is far enough away from those used in previous

searches.

Some steps in the main flow of the algorithm are

executed in a distributed fashion:

– The random generation and initial evaluation of in-

dividuals that form the population, implemented as

a Spark map transformation.

– The evolution of the population. Every partition of

the population RDD is considered to be an island,

all with the same number of individuals. Islands

evolve isolated during a number of evolutions. This

number can be configured and is the same for all

islands. During these evolutions every worker cal-

culates mutations picking random individuals from

its local partition only. As it has been said, the pro-

posed enhanced parallel DE (eSiPDE) is an improve-

ment of the island-based parallel DE (SiPDE) [37].

With this respect, eSiPDE enhances SiPDE by al-

lowing islands to be heterogeneous, that is, having

different combinations of CR and F values to enrich

diversity.

– The migration strategy, which introduces diversity

by exchanging selected individuals among islands

every time the evolution of the islands ends. In or-

der to evaluate the communications overhead, it has

been implemented a custom Spark partitioner that

randomly and evenly shuffles elements among par-

titions without replacement.

– The checking of the termination criterion, imple-

mented as a Spark reduce action (a distributed OR

operation).

The main flow repeats this evolution-migration loop

until the termination criterion is met. Then the best

individual is selected by means of a Spark reduce action

(a distributed MIN operation).

An asynchronous local search runs concurrently with

the main flow using a different thread on the Spark

driver. As it can be seen in Figure 1, synchronization

with the main flow takes place at two points:

– Before the evolution of the islands (label ”1” in the

figure), where a new search is initiated if no other is

in progress. The candidate solution selected as in-

put of the local search would be the best individual,

found up to that moment, that was far enough away

from candidate solutions used in previous searches.

A tabu list is used to keep track of already explored

candidate solutions and input selection is made by

means of a Spark distributed filtering followed by a

reduce action (a distributed MIN operation).

– Once the local search finishes (label ”2” in the fig-

ure), if the candidate solution has been improved by

the local search, a substitution strategy is applied

in between the evolution and migration steps to in-

corporate it into the population. For this work, an

strategy that replaces the worst individual in each

island with the local search solution (only if it is

better) is used. It has been implemented as a Spark

map transformation.

Note that with this approach it would be at most

one local search running concurrently with islands evo-

lution at every moment. If the local search finishes be-

fore the islands evolution, its result is incorporated to

the population once the evolution ends and a new local

search is initiated before the following evolution. By the

contrary, if the islands evolution finishes before the local

search, a migration is done and a new evolution started

without waiting for the local solver to end. This avoids

the drawback of synchronous approaches in which the

evolution of the population gets blocked waiting for a

local search to finish. Note also that the input to the

local search is selected from the whole population, so

only one global tabu list is needed, and that its result

is included in every island.

5 Experimental Results

In order to evaluate the Spark implementation pro-

posed in this paper (eSiPDE), three challenging param-
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Fig. 1: Enhanced Spark implementation of the island-based DE algorithm (eSiPDE).

eter estimation problems from the domain of compu-

tational systems biology were considered. These prob-

lems are known to be particularly hard due to their

ill-conditioning and non-convexity [23,42]:

– Circadian model: parameter estimation in a dynamic

model of the circadian clock in the plant Arabidopsis

thaliana, as presented in [22]. The model consists of

7 ordinary differential equations with 27 parameters

(13 of them were estimated) with data sets from 2

experiments.

– NFKB model: this problem is based on the model

in [21] and consists of 15 ordinary differential equa-

tions with 29 parameters and data sets from 2 ex-

periments.

– 3-step pathway model: problem considering a 3-step

generic and highly non-linear pathway with 8 differ-

ential equations and 36 parameters, and data sets

from 16 experiments, as presented in [23].

For the experimental testbed two different platforms

have been used. First, experiments were conducted in

our local cluster Pluton, that consists of 16 nodes pow-

ered by two octa-core Intel Xeon E5-2660 CPUs with

64 GB of RAM, and connected through an InfiniBand

FDR network. Second, experiments were deployed with

default settings in the Microsoft Azure public cloud us-

ing an standard HDInsight Spark cluster with A3 in-

stances (4 cores, 7GB) for head and worker nodes. Un-

less otherwise noted, Scala v2.10 was the programming

language and Spark v1.4.1 the distributed framework

used in the experiments. In both testbeds, each exper-

iment was executed a number of 20 independent runs.

Note that, since Spark runs on the Java Virtual Ma-

chine (JVM), usual precautions (i.e. warm-up phase,

effect of garbage collection) have been taken into ac-

count to avoid distortions on the measures.

As described in Section 3, the proposed implemen-

tation (eSiPDE) can be used in two different manners:

(i) dividing the population among islands and using the

same CR and F parameters for every island (homoge-

neous approach), and (ii) attempting a more thorough

exploration of the solution space by means of the coop-

eration between different DE with different F and CR

parameters in each island (heterogeneous approach).

We compare the performance of both homogeneous and

heterogeneous approaches with the performance of a

sequential implementation of the classical DE (seqDE)

and the implementation of the island-based parallel DE

(SiPDE) described in [37].

There are many configurable parameters in the clas-

sical DE algorithm, such as the mutation scaling factor

(F), the crossover constant (CR) or the mutation strat-

egy (MSt). The selection of these parameters may have

a great impact in the algorithm performance. Since the

objective of this work is not to evaluate their impact,

only results for one configuration are reported here.

Previous tests have been done to select a configura-

tion that leads to reasonable computation times. For all

the experiments we used MSt=DE/rand/1. For testing

the homogeneous configuration of eSiPDE, F=0.9 and

CR=0.8 were used, while for the heterogeneous config-

uration different combination of CR={0.2,0.7,0.8,0.9}
and F={0.8,0.9} values were randomly selected for each

island. Besides, in island-based parallel DE algorithms,

new parameters have to be also considered, such as

the migration frequency (µ) or the island size (λ). In

the following experiments the island size has been λ =
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NP/nproc and the migration frequency has been set to

200 local iterations between migrations. Nevertheless,

the proposal can be applied to any other configura-

tion parameters. Also, it is worth noting that further

performance improvements can be achieved by further

fine-tuning settings.

Since the aim of this work is to accelerate the ex-

ecution time required for convergence in complex pa-

rameter estimation problems, the best way to fairly

assess the performance of the proposal is to define a

value-to-reach (VTR) to be used as stopping criteria

for the algorithm. However, in the 3-step pathway and

the NFKB benchmarks the execution of only one test

could take several days to complete. Thus, we decided

to use as stopping criterium: (a) a VTR=1e-5 for the

circadian benchmark, evaluating its performance from

an horizontal view; and (b) a predefined effort of maxi-

mum execution time Tmax = 1000s for the 3-step path-

way and the NFKB benchmarks, assessing their perfor-

mance from a vertical view.

Results for the Circadian benchmark in cluster Plu-

ton are shown in Table 2. This table displays, for each

experiment, the number of cores (#np) used, the mean

number of evaluations required (#evals), the mean num-

ber of migrations (#mig.), the mean and the median of

the execution times (time(s)), and the speedup achieved

versus the seqDE. Due to the large dispersion in the

obtained results for the eSiPDE implementation, the

speedup was calculated using the median of the mea-

sures. Note that the number of cores matches the num-

ber of islands used. Results show that the paralleliza-

tion improves the execution time required for conver-

gence by performing the evaluations in parallel. SiPDE

achieves already a good speedup versus the sequential

algorithm (seqDE). However, the local search included

in the eSiPDE implementation significantly reduces the

execution time required for convergence by decreasing

the number of evaluations. Note the radical reduction

in the number of migrations when the local search is

used. Moreover, the diversification introduced in the

heterogeneous approach outperforms the homogeneous

approach, specially when the number of islands grows.

Since the values in the table hide the underlying

distribution, that in this kind of stochastic problems is

very important, Figure 2 shows the bean plots to com-

pare the distribution of the homogeneous versus the

heterogeneous configuration of the eSiPDE implemen-

tation. Note that the logarithmic scale has been used

in the y axis and the median of each distribution is also

shown in each bean. It can be noted that for two islands

the performance of the homogeneous configuration was

slightly better because the heterogeneous configuration

exhibited more outliers. However, when the number of

5
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Fig. 2: Bean plots comparing different DE strategies in

the Circadian benchmark.

islands increases, the heterogeneous configuration dras-

tically reduces the dispersion in the results and achieves

better performance.

Results for 3-step pathway and NFKB benchmarks

are shown in Table 3. This table displays, for each ex-

periment, the number of cores (#np) used, the average

of the evaluations performed (#evals), and the aver-

age of the best value for each run (fbest). Results show

that the parallelization improves the convergence rate

since, in the same amount of time, more evaluations are

executed in parallel achieving better quality solutions.

For 3-step pathway benchmark, Table 4 shows the

number of executions from a total of 20 samples (%hits)

that achieved convergence using a VTR=100 in a max-

imum time of 1000s, as well as the mean and minimum

time of all those executions that reached the VTR. As it

can be seen, as the number of islands grows, the number

of executions that achieve the quality solution increases.

These results show the effectiveness of the parallel algo-

rithm in terms of quality of the solution. Also, it should

be noted, that the heterogeneous configuration achieves

always better results in terms of execution times.

To better illustrate the improvement in convergence

time, Figure 3 shows the convergence curves for the

three benchmarks using the sequential algorithm and

the parallel implementations with 16 islands. The con-

vergence curve represents the current best objective

function value as the algorithm proceeds. The conver-

gence curves depicted here are those that fall in the

median values of the results distribution. It can be seen

that, as expected, the local solver improves the con-
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Table 2: Performance evaluation of different DE implementations for the Circadian benchmark in Pluton. Param-

eters: D=13, NP=256, VTR=1e-5.

method #np #evals #mig. time(s) speedup
mean±std median

seqDE 1 6,437,670 - 40883.39±3712.56 40916.76 -
2 5,980,416 117 19275.65±1281.63 19015.77 2.15
4 5,729,536 112 9305.30±1038.59 9071.51 4.51

SiPDE 8 3,904,256 74 3319.33±296.88 3256.62 12.56
16 1,835,776 36 790.97±90.50 815.51 50.17
32 1,577,216 30 348.36±43.47 355.05 115.24
2 179,456 3.5 472.41±441.29 143.80 284.54
4 230,656 4.5 388.31±736.39 104.44 391.77

eSiPDE 8 171,776 3.3 134.01±140.78 75.26 543.67
(homo) 16 225,536 4.4 115.48±119.04 77.82 525.79

32 235,776 4.6 67.60±63.63 40.56 1008.55
2 161,536 3.1 524.28±631.98 311.08 131.53
4 120,576 2.3 204.81±217.42 165.09 247.85

eSiPDE 8 128,256 2.5 115.51±135.43 45.76 894.16
(hetero) 16 107,776 2.1 54.81±43.34 48.07 851.19

32 161,536 3.2 46.85±36.01 31.55 1296.89

Table 3: Performance evaluation of the 3-step path-

way and NFKB benchmarks in Pluton. Stopping crite-

rion: predefined effort, Tmax = 1000s. Parameters for 3-

step pathway: D=36, NP=512. Parameters for NFKB:

D=29, NP=512.

method #np #evals fbest

3
-s

te
p

p
a
th

w
a
y

seqDE 1 90,624 820.54
2 191,232 753.52

SiPDE 4 358,912 711.55
8 653,312 690.06
16 1,179,392 632.65
2 209,483 573.16

eSiPDE 4 369,972 363.18
(homo) 8 572,015 126.26

16 945,646 92.13
2 199,624 468.31

eSiPDE 4 350,903 305.97
(hetero) 8 552,291 102.56

16 912,968 91.52

N
F

K
B

seqDE 1 21,274 0.06868
2 44,032 0.06051

SiPDE 4 81,408 0.05472
8 143,104 0.05208
16 239,104 0.04980
2 44,334 0.03295

eSiPDE 4 82,748 0.03358
(homo) 8 146,516 0.03386

16 240,678 0.03340
2 43,930 0.03268

eSiPDE 4 84,328 0.03365
(hetero) 8 143,436 0.03256

16 231,715 0.03719

vergence rate in all the benchmarks. Also the hetero-

geneous configuration exhibits a slightly better perfor-

mance than the homogeneous one.

Table 4: Performance evaluation of the 3-step pathway

using as stopping criterion the combination of a pre-

defined effort (Tmax = 1000s) and quality of solution

(V TR = 100).

method #np %hits time(s)
mean min

seqDE 1 0% - -
2 0% - -

eSiPDE 4 10% 927 890
(homo) 8 25% 818 563

16 85% 632 188
2 0% - -

eSiPDE 4 5% 774 774
(hetero) 8 30% 693 361

16 75% 477 150

Finally, in order to evaluate the performance of the

proposal in a public cloud, some experiments were con-

ducted in the Microsoft Azure public cloud. As it can

be seen in Table 5, the proposal achieves similar results

in Azure as the ones obtained in the local cluster in

terms of convergence (number of evaluations) and scal-

ability. However, the overheads introduced in Azure due

to virtualization and use of non-dedicated resources in a

multitenant platform are not negligible. The execution

times of Azure are between 1.3x and 1.4x times worst

than those of Pluton. Bean plots comparing the results

obtained in both platforms for the heterogeneous con-

figuration are shown in Figure 4. This figure clearly

shows, not only the larger execution time but also the

larger dispersion in the results obtained in Azure (note

the logarithmic scale in the y axis).
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Table 5: Performance evaluation of different DE implementations for the Circadian benchmark in Azure. Param-

eters: D=13, NP=256, VTR=1e-5.

method #np #evals #mig. time(s) speedup
mean±std median

seqDE 1 6,554,317 - 95294.70±5623.22 95286.86 -
2 6,180,096 121 47895.80±5091.67 49066.32 1.99
4 5,642,496 110 21106.12±1549.87 20732.02 4.52

SiPDE 8 3,917,056 76 11449.79±1951.18 11260.30 8.32
16 1,899,776 37 3246.46±376.04 3178.94 29.35
2 100,096 1.9 725.16±392.86 734.27 129.77

eSiPDE 4 199,936 3.9 874.22±1362.30 393.79 242.01
(homo) 8 87,296 1.7 177.68±90.83 111.53 854.39

16 171,776 3.4 216.61±177.06 130.16 732.08
2 102,656 2.0 745.88±656.98 383.50 248.47

eSiPDE 4 120,576 2.3 453.78±431.47 384.70 247.69
(hetero) 8 156,416 3.0 355.51±347.84 200.70 474.78

16 135,936 2.6 160.30±151.85 112.83 844.48

5.1 Comparison with other parallel approaches

Several tests have been also performed to assess how

competitive the Spark parallel implementation can be

with respect to other parallel approaches.

Since MapReduce is still the de-facto standard for

large scale data-intensive applications, it has been se-

lected as representative of other cloud-based approaches

for the comparison. We have compared a MapReduce

implementation of SiPDE using Hadoop v2.7.1 and Java

v1.7.0. Figure 5 shows some bean plots that allow for an

easy comparison of the execution times obtained using

the MapReduce and the SiPDE implementations in the

local cluster. Note that not only the execution time is

larger for the MapReduce implementation but also the

dispersion of the results obtained is bigger.

The experimental results show that MapReduce has

significant higher overhead per iteration than Spark

mainly caused by longer task initialization times and

HDFS access. To evaluate this overhead we have used

a modified version of our implementation in which the

evolution of the population was removed. This modified

implementation was executed for a total of 8 evolution-

migration iterations and the overhead of each iteration

was measured separately in order to assess differences

between them. Figure 6 shows the results obtained both

for the Spark and the MapReduce implementations in

the local cluster. As it can be seen, the first iteration

in the Spark implementation is always the most time-

consuming (it corresponds to the outliers in the box

plots). However, the rest of the iterations show lower

overhead and lower dispersion in the results. By the

contrary, in MapReduce there is no significant differ-

ence between the first and the subsequent iterations.

The figures clearly indicate a higher overhead and large

dispersion in the results, being the mean overhead of

each iteration 17.95±2.50s versus the 0.027±0.006s in

Spark.

In order to evaluate the competitiveness of the pro-

posed cloud-based solution with a traditional HPC so-

lution, we have also compared the Spark eSiPDE im-

plementation with an MPI implementation. The same

previous experiments were carried out with the imple-

mentation of the asynchronous parallel enhanced DE

(asynPDE) described in [28]. This implementation is

coded in C and uses the OpenMPI library. It must

be noted that, as already available implementations in

C/C++ and/or FORTRAN existed for all the bench-

marks, we have wrapped them in the Scala code of

eSiPDE by using Scala native interfaces (i.e JNI, JNA,

SNA). Thus, the code used for the benchmark function

evaluation has been the same in both the asynPDE and

eSiPDE implementations.

To perform the fairest comparison, the MPI imple-

mentation includes also a local solver and a tabu list,

like eSiPDE, to improve the convergence rate of the DE.

Results for these experiments are reported in Table 6.

This table displays, for each experiment, the number

of cores (#np) used, the mean number of evaluations

needed (#evals), and the mean of the execution times

(time(s)). The homogeneous configuration with the fol-

lowing parameters: F=0.9, CR=0.8, NP=256, DE/rand/1

as mutation strategy, and a VTR=1e-5 as stopping

criterion, has been used in all the cases. As it can

be observed, the MPI implementation achieves conver-

gence between 5 and 7 times more quickly than the

Spark implementation. This is mostly because it also

achieves an important reduction in the number of func-

tion evaluations required (between 2x and 3x). Two can

be the main causes, both of them arising from the in-

herent features of the programming paradigm used in

each implementation. First, since the communication
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Fig. 3: Convergence curves: Circadian using as stopping

criterium a VTR=1e-5, 3-step pathway and NFKB us-

ing as stopping criterium a predefined effort of Tmax =

1000s.

among workers is not allowed in Spark, the migration

strategy is implemented with a partitioner that intro-

duces an implicit synchronization step in the Spark im-

plementation. The MPI implementation, on the con-

trary, performs the information exchange between is-

lands through non-blocking asynchronous message pass-

ing operations. Another consequence of the lack of com-

Fig. 4: Bean plots comparing execution times for the

Circadian benchmark in the local cluster Pluton and

the Azure public cloud for the heterogeneous config-

uration. The speedup achieved in Pluton vs Azure is

displayed on top of each bean.

Fig. 5: Bean plots comparing Spark SiPDE vs MapRe-

duce implementations in cluster Pluton for the

Circadian benchmark. Parameters: D=13, NP=640,

VTR=1e-5.

munications between workers in Spark is that the ful-

fillment of the stopping criterion by one ore more is-
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(a) Spark overhead

(b) MapReduce overhead

Fig. 6: Boxplot of the overhead times per evolution-

migration iteration in Pluton.

Table 6: Comparison of Spark and MPI parallel DE im-

plementations for the Circadian benchmark in the lo-

cal cluster Pluton and the Azure public cloud. Parame-

ters: F=0.9, CR=0.8, NP=256, MtSt=DE/rand/1, and

VTR=1e-5.

method #np #evals time(s)

P
lu

to
n

2 179,456 472.41±441.29
Spark 4 230,656 388.31±736.39
eSiPDE 8 171,776 134.01±140.78

16 225,536 115.48±119.04
2 78,276 94.62±66.75

MPI 4 78,903 49.23±35.79
asynPDE 8 79,992 26.38±21.12

16 87,341 17.13±14.11

A
zu

re

2 102,656 745.88±656.98
Spark 4 120,576 453.78±431.47
eSiPDE 8 156,416 355.51±347.84

16 135,936 160.30±151.85
2 70,332 201.49±110.32

MPI 4 57,195 84.68±2.55
asynPDE 8 69,469 54.45±22.06

16 72,244 30.54±5.07

lands during island evolution cannot be informed to the

rest until the reduce operation at the end of the stage

(see Figure 1). Thus, the Spark implementation cannot

stop just right when the stopping criterion is reached

(as the MPI one does). Second, the migration strategy

is different in both implementations. In the MPI im-

plementation a selection of the best individuals in one

island replace the worst individuals in the neighbour.

In the Spark implementation a partitioner randomly

and evenly shuffles elements among islands without re-

placement. Hence, to allow for a further comparison,

Figure 7 shows the number of evaluations per second

and core (eval/s/core) achieved for both implementa-

tions and the two platforms used. Note that this metric

includes not only the CPU time for the evaluation it-

self but also the communication time and other imple-

mentation overheads. We encountered that the number

of evaluations per second and core of the MPI imple-

mentation was between 2.18x and 2.69x times that of

the Spark implementation in Pluton, and between 2.54x

and 2.90x in the case of Azure. However, note that in

Pluton the MPI implementation achieves more than 400

eval/s/core while in Azure it only achieves around 150

eval/s/core. Another interesting result that this figure

illustrates is the fact that the number of eval/s/core de-

creases with the number of cores. This happens for both

implementations and both platforms, but its impact is

larger for the MPI implementation in Pluton. The rea-

son is that the computation time decreases with the

number of cores due to the tasks distribution. In the

MPI implementation, the number of communications

increases with the number of cores, thus, the trade-off

between computation and communication is not pre-

served with the number of cores. By the contrary, in the

Spark implementation, the number of communications

remains constant with the number of cores. However, as

the number of cores grows this amount of communica-

tions are spread between a large number of nodes which

also impacts on the computation time/communication

time ratio.

All these results show that, as it was expected, the

MPI implementation outperforms Spark in terms of ex-

ecution times. This is mainly due to its low level pro-

gramming language and reduced overhead. Neverthe-

less, there are other tradeoffs to be concerned with,

apart from efficiency. The Spark implementation should

be positively considered since it allow easier programma-

bility and because it also presents further advantages,

such as native support to node failure and data repli-

cation.

6 Conclusions

In this paper, we presented a cloud based approach

for parameter estimation problems in computational

systems biology using an enhanced Differential Evolu-

tion algorithm. The proposal aims to benefit from the
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Fig. 7: Number of evaluations per second and core

(evals/s/core) achieved by asynPDE vs eSiPDE in the

local cluster Pluton and the Azure public cloud.

exploration abilities of DE and the exploitation abilities

of efficient local search. The method improves global

search through a parallel implementation based on a

cooperative island-model. The local search, on its turn,

is improved including a local solver, together with a

tabu list, that exploits the structure of parameter esti-

mation problems in systems biology. The enhancement

in the local search is fundamental to successfully exploit

the special characteristics of these problems, which are

typically very ill-conditioned and highly multimodal.

The proposal has been implemented using Spark

and thoroughly evaluated with three challenging pa-

rameter estimation problems from the domain of com-

putational systems biology on two different platforms:

a local cluster and a virtual cluster on the Microsoft

Azure public cloud. Results show that the enhanced

DE significantly reduces the execution time required for

convergence in all the benchmarks. Besides, using cloud

resources shows similar behaviour in terms of conver-

gence and scalability as using resources from a local

cluster, but at the expense of a not negligible overhead.

Finally, a comparison with other parallel approaches

has been performed: a MapReduce implementation, to

compare with the de-facto standard for cloud-based ap-

plications, and a MPI implementation, to compare with

traditional HPC solutions. The results conclude that,

on the one hand, Spark presents better support for it-

erative algorithms than MapReduce, reducing the over-

head between the first and subsequent iterations. On

the other hand, as it was expected, the MPI implemen-

tation outperforms Spark in terms of processing speed.

But Spark can be still of interest due to its easier pro-

grammability and inherent support to node failure and

data replication.

Although the proposed Spark implementation was

designed and tested with focus on parameter estimation

problems in computational systems biology, it can also

be applied to solve arbitrary global optimization prob-

lems. In particular, we believe that both the description

of the implementation and the results obtained in this

work can be useful for those interested in the potential

of new cloud-based programming models for the devel-

opment of novel parallel metaheuristic methods.

The source code is publicly available at:

https://bitbucket.org/xcpardo/sipde.
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