
Implementing Parallel Differential Evolution on
Spark

Diego Teijeiro1, Xoán C. Pardo1, Patricia González1, Julio R. Banga2, and
Ramón Doallo1

1 Grupo de Arquitectura de Computadores. Universidade da Coruña. Spain
({diego.teijeiro,xoan.pardo,patricia.gonzalez,doallo}@udc.es)

2 BioProcess Engineering Group. IIM-CSIC. Spain (julio@iim.csic.es)

Abstract. Metaheuristics are gaining increased attention as an efficient
way of solving hard global optimization problems. Differential Evolution
(DE) is one of the most popular algorithms in that class. However, its
application to realistic problems results in excessive computation times.
Therefore, several parallel DE schemes have been proposed, most of them
focused on traditional parallel programming interfaces and infrastruc-
tures. However, with the emergence of Cloud Computing, new program-
ming models, like Spark, have appeared to suit with large-scale data
processing on clouds. In this paper we investigate the applicability of
Spark to develop parallel DE schemes to be executed in a distributed
environment. Both the master-slave and the island-based DE schemes
usually found in the literature have been implemented using Spark. The
speedup and efficiency of all the implementations were evaluated on the
Amazon Web Services (AWS) public cloud, concluding that the island-
based solution is the best suited to the distributed nature of Spark. It
achieves a good speedup versus the serial implementation, and shows a
decent scalability when the number of nodes grows.
Keywords: Metaheuristics, Differential Evolution, Cloud Computing,
Spark, Amazon Web Services

1 Introduction

Global optimization problems arise in many areas of science and engineering [1–
3]. Most of these problems are NP-hard, so many research efforts have focused
on developing metaheuristic methods which are able to locate the vicinity of
the global solution in reasonable computation times. Moreover, in order to re-
duce the computational cost of these methods, a number of researchers have
studied parallel strategies for metaheuristics [4, 5]. However, all these efforts are
focused on traditional parallel programming interfaces and traditional parallel
infrastructures.

With the advent of Cloud Computing effortless access to large number of dis-
tributed resources has become more feasible. But developing applications that
execute at so big scale is hard. New programming models are being proposed to
deal with large scale computations on commodity clusters and Cloud resources.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/61918622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributed frameworks like MapReduce [6] or Spark [7] provide high-level pro-
gramming abstractions that simplify the development of distributed applications
including implicit support for deployment, data distribution, parallel processing
and run-time features like fault tolerance or load balancing. We wonder how
much benefit can we expect from implementing parallel metaheuristics using
these new programming models because, besides the many advantages, they
also have some shortcomings. Cloud-based distributed frameworks prefer avail-
ability to efficiency, being the speedup and distributed efficiency frequently lower
than in traditional parallel frameworks due to the underlying multitenancy of
virtualized resources.

The aim of this paper is to explore this direction further considering a paral-
lel implementation of Differential Evolution (DE) [8], probably one of the most
popular heuristics for global optimization, to be executed in the Cloud. The
main contribution of the proposal is an analysis of different alternatives in im-
plementing parallel versions of the DE algorithm using Spark and a thoroughly
evaluation of their feasibility to be executed in the Cloud using a real testbed
on the Amazon Web Services (AWS) public cloud.

The organization of this paper is as follows. Section 2 briefly presents the
background and related work. Some new programing models in the Cloud are
described in Section 3. Section 4 describes the proposed implementations of the
Differential Evolution algorithm using Spark. The performance of the proposal
is evaluated in Section 5. Finally, Section 6 concludes the paper and discusses
future work.

2 Related Work

The parallelization of metaheuristics methods has received much attention
to reduce the run time for solving large-scale problems [9]. Many parallel algo-
rithms have been proposed in the literature, most of them being parallel im-
plementations based on traditional parallel programming interfaces such as MPI
and OpenMP. However, research on cloud-oriented parallel metaheuristics based
mainly on the use of MapReduce has also received increasing attention in re-
cent years. MRPSO [10] uses the MapReduce model to parallelize the Particle
Swarm Optimization (PSO). MRPGA [11] attempts at combining MapReduce
and genetic algorithms (GA). They properly claim that GAs cannot be directly
expressed in MapReduce due to their specific characteristics. So they extend the
model featuring a hierarchical reduction phase. A different approach is followed
in [12], that tries to hammer the GAs into the MapReduce model. In [13] the
applicability of MapReduce to distributed simulated annealing (SA) was also
investigated. They design different algorithmic patterns of distributed SA with
MapReduce and evaluate their proposal on the AWS public cloud. Recently,
in [14], a practical framework to infer large gene networks through a parallel hy-
brid GA-PSO optimization method using MapReduce has also been proposed.

Some proposals are more specific on studying how to apply MapReduce to
parallelize the DE algorithm to be used in the Cloud. In [15] the fitness evalua-
tion in the DE algorithm is performed in parallel using Hadoop (the well-known
open-source MapReduce framework). However, the experimental results reveal
that the extra cost of Hadoop DFS I/O operations and the system bookkeep-
ing overhead significantly reduces the benefits of the parallelization. In [16], a
concurrent implementation of the DE based on MapReduce is proposed, how-
ever, it is a parallelized version of a neoteric DE based on the steady-state
model instead of on the generation alternation model. While the generational
model holds two populations and generates all individuals for the second popu-
lation from those of the current population, the steady-state model holds only
one population and each individual of the population is updated one by one.
Comparing with the generational model, the parallelization of the steady-state
model is simpler because it does not require synchronization for replacing the
current population by newborn individuals simultaneously. On the other hand,
the experiments reported in that paper were conducted on a multi-core CPU,
thus, their implementation take advantage of the shared-memory architecture,
sharing the population among the different threads, which is not possible in a
distributed cloud environment. In [17] a parallel implementation of DE based
clustering using MapReduce is also proposed. This algorithm was implemented
in three levels, each of which consists of different DE operations.

To the best of our knowledge, there is no previous work that explores the use
of Spark for evolutionary computation. Also, previous works using MapReduce
have rarely evaluated their proposals in a real testbed on a public cloud.

3 New Programming Models in the Cloud

From the new programming models that have been proposed to deal with
large scale computations on cloud systems, MapReduce [6] is the one that has
attracted more attention since its appearance in 2004. In short, MapReduce ex-
ecutes in parallel several instances of a pair of user-provided map and reduce
functions over a distributed network of worker processes driven by a single mas-
ter. Executions in MapReduce are made in batches, using a distributed filesys-
tem (typically HDFS) to take the input and store the output. MapReduce has
been applied to a wide range of applications, including distributed pattern-based
searching, distributed sorting, graph processing, document clustering or statis-
tical machine translation among others.

When it comes to iterative algorithms as those that are typical in areas like
machine learning or evolutionary computation, MapReduce has shown serious
performance bottlenecks. Computations in MapReduce can be described as a
directed acyclic data flow where a network of stateless mappers and reducers
process data in single batches (see Figure 1). All input, output and intermediate
data is stored and accessed via the file system and map/reduce tasks are created
in every single batch. Having several of these single batches executed inside

split 0 map	

part 0 reduce	

split 1 map	

split 2 map	

part 1 reduce	

Input DFS

Output DFS sort
copy

merge

Fig. 1: MapReduce dataflow.

a loop has shown to introduce considerable performance overhead [18] mainly
because there is no way of reusing data or computation from previous iterations
efficiently.

Although some extensions have been proposed to improve the support to it-
erative algorithms in MapReduce like Twister [18], iMapReduce [19], or HaLoop
[20], they still perform poorly on the kind of algorithms we are interested in,
mainly due to those systems inability to exploit the (sparse) computational de-
pendencies present in these tasks [21]. New proposals, not based on MapReduce,
like Spark [7] or Fink (which has its roots on Stratosphere [22]), are designed
from the very beginning to provide efficient support for iterative algorithms.

Spark provides a language-integrated programming interface to resilient dis-
tributed datasets (RDDs), a distributed memory abstraction for supporting fault-
tolerant and efficient in-memory computations. According to authors [7] the per-
formance of iterative algorithms can be improved by an order of magnitude when
compared to MapReduce (using Hadoop).

Formally, an RDD is a read–only fault–tolerant partitioned collection of
records. Users can manipulate them using a rich set of operators, control their
partitioning to optimize data placement and explicitly persist intermediate re-
sults (in memory by default but also to disk). RDDs are created from other RDDs
or from data in stable storage by applying coarse-grained transformations (e.g.,
map, filter or join) that apply the same operation to many data items. Once cre-
ated, RDDs are used in actions (e.g. count, collect or save) which are operations
that return a value to the application or export data to a storage system.

RDDs are computed lazily the first time they are used in an action, so trans-
formations can be pipelined to form a lineage. By storing enough information
about their lineages, RDDs do not need to be materialized at all times, as every
RDD can recompute its partitions from previously persisted RDDs or data in
stable storage at any time. This feature is the one used to provide fault-tolerance
in case of an RDD partition lost.

Spark runtime is composed of a single driver program and multiple workers
which are long-lived processes launched by the driver. Workers read data blocks
from a distributed file system and persist RDD partitions in RAM across opera-

Stage 1

Stage 2 Stage 3

A: B:

C: D:

E:

F:

G:
groupBy

map

union

join

Fig. 2: Example of how Spark computes job stages.

tions. Developers write the driver program where they define one or more RDDs
and invoke actions on them. Whenever an action is executed on an RDD, the
Spark job scheduler uses its lineage to compute a directed acyclic graph (DAG)
of stages. The scheduler then launches tasks to compute missing partitions from
each stage until it has computed the target RDD. Assignment of tasks to workers
takes into account data locality. Tasks end up being assigned to workers that
already hold the RDD partitions of interest in memory.

An example of how Spark computes job stages is showed in Figure 2. In
the figure, boxes with solid outlines are RDDs. Partitions are shaded rectangles,
darker if they are persisted in memory. Each stage contains as many pipelined
transformations with narrow (one-to-one or one-to-many) dependencies as pos-
sible. The boundaries of the stages (boxes with doted outlines in the figure)
are the shuffle operations required for wide (many-to-one or many-to-many) de-
pendencies or the presence of an already computed RDD in the lineage. In the
example, to run an action on RDD G, as output RDD from stage 1 is already
in RAM only stages 2 and 3 need to be executed.

4 Implementing Differential Evolution on Spark

Differential Evolution is an iterative mutation algorithm where vector dif-
ferences are used to create new candidate solutions. Starting from an initial
population matrix composed of NP D-dimensional solution vectors (individu-
als), DE attempts to achieve the optimal solution iteratively through changes in
its vectors. Algorithm 1 shows the basic pseudocode for the DE algorithm. For
each iteration, new individuals are generated in the population matrix through

Algorithm 1: Differential Evolution algorithm (seqDE)

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element x of the P matrix do
−→a ,
−→
b ,−→c ← different random individuals from P matrix

for k ← 0 to D do
if random point is less than CR then
−−→
Ind(k)← −→a (k) + F (

−→
b (k) - −→c (k))

end

end

if Evaluation(
−−→
Ind) is better than Evaluation(

−−−→
P (x)) then

Replace Individual(P ,
−−→
Ind)

end

end

until Stop conditions;

operations performed among individuals of the matrix (mutation - F), with old
solutions replaced (crossover - CR) only when the fitness value of the objective
function is better than the current one.

A population matrix with optimized individuals is obtained as output of the
algorithm. The best of these individuals are selected as solution close to optimal
for the objective function of the model. However, in some real applications, such
as parameter estimation in dynamic models, the performance of the classical
sequential DE is not acceptable due to the large number of objective function
evaluations needed. As a result, typical runtimes for realistic problems are in the
range from hours to days. Parallelism can help improving both computational
time and number of iterations for convergence. In the literature, different parallel
models can be found [9], being the most popular ones the master-slave model and
the island-based model. In the master-slave model the inner-loop of the algorithm
is parallelized. A master processor distributes computation operations between
the slave processors. Therefore, the parallel algorithm has the same behavior of
the sequential one. In the island-based model the population matrix is divided
in subpopulations (islands) where the algorithm is executed isolated. Sparse
individual exchanges are performed among islands to introduce diversity into
the subpopulations, preventing search from getting stuck in local optima.

With the aim of better understanding Spark intricacies and assess the perfor-
mance of different alternatives when implementing DE, we have developed three
different versions of the algorithm: (1) the classic sequential algorithm (seqDE)
which has been implemented for comparative purposes and it is the only that
does not make use of Spark; (2) three different variants of the master-slave par-
allel implementation (SmsPDE); and (3) an island-based parallel implementation
(SiPDE). All of them have been coded using the Scala language [23] which is

the one used to implement Spark itself although APIs for Python and Java also
exist. The rest of this section features relevant facts about each of the implemen-
tations. As it will be demonstrated, the main conclusion is that the island-based
parallel implementation is the best suited to the distributed nature of Spark and
obtains the best performance results.

4.1 Master-Slave DE

To implement a master-slave parallel version of the DE algorithm using Spark,
some previous insight into the way data is distributed and processed by Spark is
needed. Spark uses the RDD abstraction to represent fault-tolerant distributed
data. RDDs are inmutable sets of records that optionally can be in the form
of key-value pairs. Spark driver (the master in Spark terminology) partitions
RDDs and distributes the partitions to workers (the slaves in Spark terminology),
which persist and transform them and return results to the driver. There is no
communication among workers. Shuffle operations (i.e. join, groupBy) that need
data movement among workers through the network are expensive and should
be avoided.

Our Spark-based master-slave DE implementation (SmsPDE) follows the scheme
shown in Figure 3. A key-value pair RDD has been used to represent the popula-
tion where each individual is uniquely identified by its key. Some DE algorithm
steps have been selected as appropriate to be executed in a distributed fashion:

– The random generation and initial evaluation of individuals that form the
population, implemented as a Spark map transformation.

– The mutation strategy including random pick of individuals and replacement
of old individuals with new improved ones, implemented using three different
variants that are explained later.

– The checking of the termination criterion, implemented as a Spark reduce
action (a distributed OR operation).

The two last steps are arranged into a loop that is executed until the ter-
mination criterion is met. After that the final selection of the best individual is
also executed as a Spark reduce action (a distributed MIN operation).

The main issue found was the implementation of the mutation strategy be-
cause the population is partitioned and distributed among workers. For the mu-
tation of each individual, random different individuals have to be selected from
the whole population. How to access to individuals of other partitions from a
given worker, having the constraint that only the driver has access to the com-
plete population, was the main difficulty to be tackled. Three different variants
have been considered for solving this problem:

– The driver distributes the random generation of keys to the workers, collects
them, selects from the whole population the individuals corresponding to the
generated random keys and distributes selected individuals to the workers
that perform mutations and replacements.

Generate initial
random population

map

Master-­‐
Slave	

muta.on	

strategy	

Repeat	
 un.l	

termina.on	

criterion	
 is	

met	

best	

Evolve
population

reduce
(OR)

reduce
(MIN)

Select best
individual

Fig. 3: Spark-based Master-Slave implementation of the DE algorithm (SmsPDE).

– The driver itself makes the random pick of individuals for each member of
the population and distribute them to the workers that perform mutations
and replacements.

– The driver broadcasts the whole population to every worker using Spark
broadcast variables. This Spark feature allows workers to have access to a
local memory-cached read-only copy of the complete population. Therefore
each worker can perform mutations picking the needed random individuals
from its local copy of the population.

After benchmarking the performance of the three variants, broadcasting the
population showed to be by far the best option. This is not surprising because
the broadcasting feature of Spark is highly optimized and it is the recommended
method for iterative algorithms to distribute data to workers that has to be
reused by different iterations. Only the size of data to be broadcasted could
discourage its use, but this is not the case with DE where the size of populations
is small (usually in the range of 5D and 10D being D the problem dimension).

4.2 Island-based DE

When testing each one of the previous approaches, even using the version that
has shown best benchmarking results, the penalty due to broadcast the whole
population to workers in each iteration was unaffordable. For instance, using
one of the benchmark functions used later on in Section 5, the f15 function,
and a stopping criterion based on a predefined effort of 800,000 evaluations, the
execution time of seqDE was 30 s, while the execution time of SmsPDE using
4 nodes was 263 s. The main conclusion of our experience with the master-
slave implementation of the DE algorithm was that this approach does not fit
well with the distributed model of Spark. Therefore we decided to implement a
new parallel version of the algorithm using an island-based approach which in
advance seemed to be a more promising one.

Generate initial
random population

map

Repeat	
 un)l	

termina)on	

criterion	
 is	

met	

best	

Evolve islands
population

reduce
(OR)

reduce
(MIN)

Select best
individual

Island	

evolu)on	

map

Island	

evolu)on	

Island	

evolu)on	

Migration

Migra)on	

strategy	

partitionBy

Fig. 4: Spark-based island implementation of the DE algorithm (SiPDE).

Figure 4 shows the scheme of the Spark-based island DE (SiPDE) implemen-
tation. As it can be seen it has some steps in common with the master-slave
implementation: i.e. generation of the population, checking of the termination
criterion and selection of the best individual. The main difference resides in the
way the population evolves. Every partition of the population RDD has been
considered to be an island, all with the same number of individuals. Islands evolve
isolated during a number of evolutions. This number can be configured and is the
same for all islands. During these evolutions every worker calculates mutations
picking random individuals from its local partition only. To introduce diversity a
migration strategy that exchanges selected individuals among islands is executed
every time the number of evolutions is reached. This evolution-migration loop is
repeated until the termination criterion is met.

For implementing the migration strategy a Spark feature known as parti-
tioner has been used. In Spark the partitioner is responsible for assigning key-
value pair RDD elements to partitions based on their keys. Default partitioner
implements a hash-based partitioning using the Java hash code of the key. For
this work we have implemented a custom partitioner that randomly and evenly
shuffles elements among partitions. It must be noted that this partitioner leads
to a migration strategy that randomly shuffles individuals among subpopula-
tions without replacement. This partitioner proposal is intended to evaluate the
migration communications overhead and not to improve the searching quality of
the algorithm. Adding migration strategies with that purpose in mind are left
for future work.

5 Experimental Results

In order to evaluate the efficiency of the Spark-based parallel implementation
of the island DE algorithm (SiPDE), different experiments have been carried
out. Its behavior, in terms of convergence and total execution time, has been
compared with the sequential implementation (seqDE). For the experimental
testbed Spark was deployed with default settings in the AWS public cloud using
virtual clusters formed by 2, 4, 8 and 16 nodes communicated by the AWS
standard network (Ethernet 1GB). For the nodes the m3.medium instance (1
vCPU, 3.75GB RAM, 4GB SSD) was used. Each experiment was executed a
number of 10 independent runs on every virtual cluster, and the average and
standard deviation of the execution time are reported in this section. It must
be noted that, since Spark runs on the Java Virtual Machine (JVM), usual
precautions (i.e. warm-up phase, effect of garbage collection) has been taken
into account to avoid distortions on the measures.

The performed experiments used two sets of benchmark problems: a set of
problems out of an algebraic black-box optimization testbed, the Black-Box Op-
timization Benchmarking (BBOB) data set [24]; and a challenging parameter
estimation problem in systems biology [25]. On the one hand, the experiments
over the BBOB data set were carried out to evaluate the efficiency of the pro-
posed parallelization in a popular and accessible benchmarking testbed. On the
other hand, the aim of the experiments with the parameter estimation in systems
biology is to demonstrate the potential of the proposed techniques for improving
the convergence and execution time of very hard problems. In these benchmarks,
the execution of seqDE can take hours or even days to complete one only test.
Four well known benchmarks problems from the BBOB data set were evalu-
ated: Rastringin function (f15), Schaffers function (f17), Schwefel function (f20),
and Gallagher’s Gaussian 21-hi Peaks function (f22). The considered benchmark
from the domain of computational system biology was a parameter estimation
problem in a dynamic model of the circadian clock in the plant Arabidopsis
thaliana, as presented in [25]. It must be noted that, as already available im-
plementations in C/C++ and/or FORTRAN existed for all the benchmarks, we
have wrapped them in our Scala code by using Java/Scala native interfaces (i.e
JNI, JNA, SNA).

There are many configurable parameters in the classical DE algorithm, such
as the mutation scaling factor (F), the crossover constant (CR) or the mutation
strategy (MSt), whose selection may have a great impact in the algorithm per-
formance. Since the objective of this work is not to evaluate the impact of these
parameters, only results for one configuration are reported here. For the selection
of the settings in these experiments, in general, the suggestions in [8] have been
followed. Previous tests have been done to select those parameters that lead to
reasonable computation times. Table 1 shows the selected configuration for each
benchmark.

Comparing the sequential and the parallel metaheuristics is not an easy task,
therefore, guidance of [24, 26] has been followed when analyzing the results of

Table 1: Benchmark functions. Parameters: dimension (D), population size (NP),
crossover constant (CR), mutation factor (F), mutation strategy (MSt), value-
to-reach/ftarget (VTR).

B Function D NP CR F MSt VTR

BBOB benchmarks

f15 Rastrigin Function 5 800 .8 .9 DE/rand/1 1000
f17 Schaffers F7 Function 6 1024 .8 .9 DE/rand/1 -16.94
f20 Schwefel Function 6 1024 .8 .9 DE/rand/1 -546.5
f22 Gallagher’s Gaussian 10 1600 .8 .9 DE/rand/1 -1000

Systems Biology benchmark

circadian Circadian model 13 640 .8 .9 DE/rand/1 1e-5

these experiments. On the one hand, the behavior of the proposed solution was
compared with the sequential classic version of DE (seqDE), therefore, speedups
calculated as TseqDE/TSiPDE are reported in this section. On the other hand,
both vertical and horizontal views can be used when evaluating a parallel meta-
heuristic. A vertical view assesses the performance of a fix number of evaluations,
i.e., a pre-defined effort; while an horizontal view assesses the performance by
measuring the time needed to reach a given target value. Thus, two different stop-
ping criteria were considered in these experiments: maximum effort, for the ver-
tical view, and solution quality (using as stopping criterion a Value-To-Reach),
for the horizontal view.

Results from both views are shown in Table 2. For each experiment, the num-
ber of nodes (#n) used, the mean execution time and the standard deviation
(in seconds) of the 10 independent runs in each experiment, the average num-
ber of migrations (#m) performed in the SiPDE method, and the speedup (sp)
achieved are shown. It should be noted that the stopping criterion is evaluated
during each island evolution but, when it is met by one or more islands, the
algorithm only stops after the reduce operation at the end of the stage (see Fig-
ure 4). Thus, because no communication among workers is possible in Spark, the
parallel SiPDE implementation cannot stop just right when the stopping criterion
is reached (as the serial one does).

The figures for the vertical view (predefined effort) show that the proposed
SiPDE method accelerates the computation of seqDE by performing the same
number of evaluations in parallel. The figures for the horizontal view (qual-
ity solution) also demonstrate that the proposed SiPDE method reduces the
computation time needed to achieve the VTR of the seqDE by improving the
convergence of the algorithm.

The speedup achieved when using the predefined effort as stopping criterion
deviates from the ideal one because of the overhead introduced by the commu-
nications. This fact can be observed in Figure 5 where both the speedup and
efficiency are shown, the latter calculated as speedup/np. In the experiments with
the BBOB benchmarks, due to their short execution times, only two migrations
were performed among islands before the stopping criterion is met, while for

Predefined Effort Quality Solution
method #n time±std #m sp time±std #m sp

f 1
5

seqDE 1 35.71± 0.20 - - 47.89± 1.67 - -
2 27.86± 0.24 2 1.28 34.26± 1.47 2 1.40

SiPDE 4 12.34± 0.21 2 2.89 15.88± 0.45 2 3.02
8 6.39± 0.21 2 5.59 9.09± 0.25 2 5.27
16 4.40± 0.40 2 8.12 3.73± 0.52 1.7 12.85

f 1
7

seqDE 1 36.60± 0.08 - - 65.42± 2.13 - -
2 31.63± 0.27 2 1.16 53.74± 1.01 2 1.22

SiPDE 4 13.31± 0.17 2 2.75 22.72± 0.28 2 2.88
8 6.80± 0.24 2 5.38 12.79± 0.43 2 5.11
16 4.25± 0.36 2 8.62 6.11± 0.35 2 10.71

f 2
0

seqDE 1 34.48± 0.07 - - 55.12± 1.86 - -
2 27.00± 0.15 2 1.28 45.48± 2.19 2 1.21

SiPDE 4 12.64± 0.16 2 2.73 17.78± 1.02 2 3.10
8 6.47± 0.26 2 5.33 9.90± 1.05 2 5.57
16 4.16± 0.41 2 8.28 4.08± 0.54 1.7 13.49

f 2
2

seqDE 1 112.14± 0.95 - - 598.38± 478.31 - -
2 101.18± 0.94 2 1.11 703.97± 465.52 12.6 0.85

SiPDE 4 44.03± 0.46 2 2.55 155.32± 156.19 7.8 3.85
8 19.00± 0.40 2 5.90 84.60± 74.77 9.4 7.07
16 10.25± 0.39 2 10.94 48.07± 37.64 11 12.45

ci
rc
a
d
ia
n

seqDE 1 6267.97± 76.26 - - 84482.53± 2369.75 - -
2 3111.14± 33.80 20 2.01 41736.17± 2114.45 26.7 2.03

SiPDE 4 1575.26± 15.56 20 3.98 19029.74± 1042.31 24 4.44
8 799.65± 9.23 20 7.84 8247.04± 558.07 20.4 10.24
16 412.90± 4.93 20 15.18 2799.53± 377.43 13.4 30.39

Table 2: Execution time in seconds, number of migrations (#m), and speedup
(sp) results for predefined effort (stopping criterion: Nevalsf15 = 1, 000, 000;
Nevalsf17 = 1, 048, 576; Nevalsf20 = 1, 040, 000; Nevalsf22 = 3, 200, 000;
Nevalscircadian = 1, 280, 000) and for a given solution quality (Value-To-Reach
reported in table 1), using different number of nodes (#n). Average results from
10 independent runs in each experiment.

the circadian 20 migrations were performed. The efficiency results show that the
overhead of the migrations barely affects on the performance when the execution
time between two of them is significant (case of the circadian benchmark, where
the efficiency is above 0.9), but it may greatly impact if it is small (case of BBOB
benchmarks, where the efficiency is below 0.8 and significatively decreases when
the number of nodes grows).

Figure 5 also shows the speedup and efficiency when using the quality of the
solution as stopping criterion. Speedups are larger than the ones obtained for
predefined effort because the cooperation among islands in the parallel searches
modifies the systemic properties of the algorithm, improving its convergence and
outperforming the serial one. In the figures reported in Table 2 it can be seen that

Fig. 5: Speedup and efficiency for results in Table 2.

for the f15, f17 and f20 benchmarks, again due to their short execution times,
most of them converged after two migrations. However, when the number of
nodes grew, some benchmarks required only one migration (so giving an average
of 1.7 in some experiments), thus, improving the efficiency obtained for 16 nodes.
The f22 benchmark is a highly multimodal function that frequently fall into an
undesired stagnation condition. Thus, the dispersion of the experimental results
is very large (see the standard deviation in Table 2) and the number of migrations
also varies from a minimum of 3 to a maximum of 19 in different runs.

For complex problems, like the circadian benchmark, the number of migra-
tions clearly decreases with the number of nodes, demonstrating the potential
of the parallel algorithm for improving the convergence of the DE method. The
harder the problem is, the most improvement is achieved by the parallel algo-
rithm, since the diversity introduced by the migration phase, although using a
naive strategy as explained in Section 4.2, actually improves the effectiveness of
the DE algorithm. Thus, for the circadian benchmark superlinear speedups are
obtained, as well as efficiency above 1.

In this kind of stochastic problems it is also important to evaluate the disper-
sion of the experimental results. Figure 6(a) illustrates how the proposed SiPDE

method reduces the variability of the DE execution time. This is an important
feature that can be used to more accurately predict the boundaries in the cost
of resources when using a public cloud like AWS.

Finally, to better illustrate the improvement of the proposed SiPDE method
versus the seqDE method, Figure 6(b) shows, for the circadian benchmark, the
convergence curves for different number of nodes. As expected, convergence time
is considerably reduced by SiPDE with respect to seqDE. It must be noted that
these results could be further improved using more skilled mutation and migra-

(a) Execution times (b) Convergence curves

Fig. 6: Box plot of the execution times and convergence curves for the circadian
benchmark with quality solution stopping criterion.

tion strategies and adding enhancements, like local search [27], which have not
been considered in this work.

6 Conclusions and Future Work

In order to explore how parallel metaheuristics could take advantage of the
recent advances in Cloud programming models, in this paper Spark-based imple-
mentations of two different parallel schemes of the Differential Evolution (DE)
algorithm, the master-slave and the island-based, are proposed and evaluated.
Early benchmarking results showed that the island-based solution is by far the
best suited to the distributed nature of Spark. Thus a thorough evaluation of
this implementation was conducted on the AWS public cloud using a real testbed
consisting on virtual clusters of different sizes.

Both synthetic and real biology-inspired benchmarks were used for the eval-
uation. The experimental results show that the proposal achieves not only a
competitive speedup against the serial implementation, but also a good scalabil-
ity when the number of nodes grows. The paper can be useful for those interested
in the potential of Spark in computationally intensive nature-inspired methods
in general and DE in particular. To the best of our knowledge, this is the first
work on using Spark to parallelize DE.

Future work will be focus on developing new migration strategies and includ-
ing further optimizations to improve the convergence of the Spark-based island
parallel DE proposed.

Acknowledgements

This research received financial support from the Spanish Ministerio de Economı́a
y Competitividad (and the FEDER) through the Project SYNBIOFACTORY
(grant number DPI2014-55276-C5-2-R). It has been also supported by the Span-
ish Ministerio de Ciencia e Innovación (and the FEDER) through the Project
TIN2013-42148-P, and by the Galician Government (Xunta de Galicia) under the
Consolidation Program of Competitive Research Units (Network Ref. R2014/041
and Project Ref. GRC2013/055) cofunded by FEDER funds of the EU.

References

1. Floudas, C.A., Pardalos, P.M.: Optimization in computational chemistry and
molecular biology: local and global approaches. Volume 40. Springer Science &
Business Media (2013)

2. Banga, J.R.: Optimization in computational systems biology. BMC systems biology
2(1) (2008) 47

3. Grossmann, I.E.: Global optimization in engineering design. Volume 9. Springer
Science & Business Media (2013)

4. Crainic, T.G., Toulouse, M.: Parallel strategies for meta-heuristics. Springer (2003)

5. Alba, E.: Parallel metaheuristics: a new class of algorithms. Volume 47. Wiley-
Interscience (2005)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’04. (2004)

7. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2012. (2012)

8. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4)
(1997) 341–359

9. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. International Transactions in Operational Research 20(1) (2013) 1–48

10. McNabb, A.W., Monson, C.K., Seppi, K.D.: Parallel PSO using MapReduce. In:
IEEE Congress on Evolutionary Computation, CEC2007, IEEE (2007) 7–14

11. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for paral-
lelizing genetic algorithms. In: IEEE Fourth International Conference on eScience,
eScience’08, IEEE (2008) 214–221

12. Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms
using MapReduce. In: Ninth International Conference on Intelligent Systems De-
sign and Applications, ISDA’09, IEEE (2009) 13–18

13. Radenski, A.: Distributed simulated annealing with MapReduce. In: Applications
of Evolutionary Computation. Springer (2012) 466–476

14. Lee, W.P., Hsiao, Y.T., Hwang, W.C.: Designing a parallel evolutionary algorithm
for inferring gene networks on the cloud computing environment. BMC systems
biology 8(1) (2014) 5

15. Zhou, C.: Fast parallelization of differential evolution algorithm using MapRe-
duce. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, ACM (2010) 1113–1114

16. Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce.
International Journal of Computers 4(4) (2010) 161–168

17. Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel differential evo-
lution clustering algorithm based on MapReduce. In: 6th International Conference
of Soft Computing and Pattern Recognition (SoCPaR), IEEE (2014) 337–341

18. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., hee Bae, S., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: The First International Workshop
on MapReduce and its Applications. (2010)

19. Zhang, Y., Gao, Q., Gao, L., Wang, C.: IMapReduce: a distributed computing
framework for iterative computation. In: Proceedings of the 1st International
Workshop on Data Intensive Computing in the Clouds (DataCloud. (2011) 1112

20. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: HaLoop: efficient iterative data
processing on large clusters

21. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data
flows. CoRR abs/1208.0088 (2012)

22. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax,
M., Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform
for big data analytics. The VLDB Journal 23(6) (2014) 939–964

23. Odersky, M., Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.,
et al.: An overview of the Scala programming language. Technical report (2004)

24. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2009: experimental setup. Technical Report RR-6828, INRIA (2009)

25. Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and
varied experimental data: the circadian clock in arabidopsis thaliana. Journal of
Theoretical Biology 234(3) (2005) 383–393

26. Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: PPSN-EMAA’06,
Reykjavik, Iceland (September 2006) 9–14

27. Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel differential evo-
lution algorithm for problems in computational systems biology. Applied Soft
Computing 33 (2015) 86 – 99

