The path integral representation for the Renyi entanglement entropies of
integer index n implies these information measures define operator correlation
functions in QFT. We analyze whether the limit n→1, corresponding
to the entanglement entropy, can also be represented in terms of a path
integral with insertions on the region's boundary, at first order in n−1.
This conjecture has been used in the literature in several occasions, and
specially in an attempt to prove the Ryu-Takayanagi holographic entanglement
entropy formula. We show it leads to conditional positivity of the entropy
correlation matrices, which is equivalent to an infinite series of polynomial
inequalities for the entropies in QFT or the areas of minimal surfaces
representing the entanglement entropy in the AdS-CFT context. We check these
inequalities in several examples. No counterexample is found in the few known
exact results for the entanglement entropy in QFT. The inequalities are also
remarkable satisfied for several classes of minimal surfaces but we find
counterexamples corresponding to more complicated geometries. We develop some
analytic tools to test the inequalities, and as a byproduct, we show that
positivity for the correlation functions is a local property when supplemented
with analyticity. We also review general aspects of positivity for large N
theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of
Wilson loops. Conclusions regarding entanglement entropy unchange