78 research outputs found

    An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection

    Get PDF
    The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory “cytokine storm” (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology. Using these signatures, we interrogated the Connectivity Map (CMap) dataset that contains the effects of over 5000 small molecules on the transcriptome of human cell lines, and looked for molecules which effects on transcription mimic or oppose those of the CS. As expected, molecules that potentiate immune responses such as PKC activators are predicted to worsen the CS. In addition, we identified the negative regulation of female hormones among pathways potentially aggravating the CS, which helps to understand the gender-related differences in COVID-19 mortality. Regarding drugs potentially counteracting the CS, we identified glucocorticoids as a top hit, which validates our approach as this is the primary treatment for this pathology. Interestingly, our analysis also reveals a potential effect of MEK inhibitors in reverting the COVID-19 CS, which is supported by in vitro data that confirms the anti-inflammatory properties of these compounds.Open access funding provided by Karolinska Institute.S

    Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

    Get PDF
    Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap

    Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

    Get PDF
    Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap

    PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data

    Get PDF
    BACKGROUND: Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy. RESULTS: We present PanDrugs, a new computational methodology to guide the selection of personalized treatments in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational based on pathway context, multi-gene markers impact and information provided by functional experiments. Our approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a xenograft mouse model demonstrating its utility. CONCLUSIONS: PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs webtool is freely accessible at http://www.pandrugs.org .The authors thank Joaquín Dopazo, Patricia León, and José Carbonell for kindly providing the modelled pathways employed in PanDrugs implementation; and Michael Tress for his helpful comments and suggestions in the earlier version of the manuscript.S

    Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

    Get PDF
    Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051

    Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity.

    Get PDF
    Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity.General: We thank Prof. Jose Maria. Ordovas for his kind suggestions; nutritionists Helena Marcos-Pasero, Elena Aguilar-Aguilar and Isabel Espinosa-Salinas for their help with volunteers management; Rosa Serrano for her help with animal experiments; Susana Molina for her advice with PBMC isolation; Luisa Mariscal, Domingo Fernandez, Lola Martinez, Diego Megias, Patricia Gonzalez, Fernando Pelaez, Anabel Sanz, Carolina Pola, Celia de la Calle, Ana Ortega, Ana Sagrera, Jose Miguel Frade, Elena Lopez-Guadamillas, Maribel Munoz, Susana Llanos, Andres Fernandez, Aranzazu Sierra, Andres Lopez, Noemi Haro and Ildefonso Rodriguez for their excellent technical and scientific support. Work at the laboratory of P.J.F.M. is funded by the Ramon Areces Foundation, (CIVP18A3891), Asociacion Espanola contra el Cancer-AECC (SIRTBIO-LABAE18008FERN), a Ramon y Cajal Award from the Spanish Ministry of Science, Innovation and Universities (MICINN) (RYC-2017-22335), RETOS projects Program of MICINN (SAF2017-85766-R) and the Portuguese Foundation for Science and Technology (FCT-MCTES, SFRH/BD/124022/2016). Work at the laboratory of ARM was funded by the MICINN (PID2019-110183RB-C21), Regional Government of Community of Madrid (P2018/BAA-4343-ALIBIRD2020-CM) and the Ramon Areces Foundation. Work at the laboratory of A.D.R. Funded by the Comunidad de Madrid-Talento Grant 2018-T1/BMD-11966 and the MICINN PID-2019-106893RA-100. Work at the laboratory of L.D. is funded by projects from the Health Research Fund (ISCIII FIS PI14/01374 and FISPI17/00508) and from a Manuel de Oya research fellowship from the Beer and Health Foundation. Work at the laboratory of A.E. is funded by a Ramon y Cajal Award from MICINN (RYC-2013-13546) and RETOS projects Program of the MICINN, co-funded by the European Regional Development Fund (ERDF) (SAF2015-67538-R). Work in the laboratory of M.S. was funded by the IRB and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (ERDF) (SAF2013-48256-R), the European Research Council (ERC-2014-AdG/669622), and the "laCaixa" Foundation.S

    Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia

    Get PDF
    Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML

    A user guide for the online exploration and visualization of PCAWG data.

    Get PDF
    Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: Ontario Institute for Cancer Research (Institut Ontarien de Recherche sur le Cancer); doi: https://doi.org/10.13039/100012118Funder: EMBL Member States EU FP7 Programme projects EurocanPlatform (260791) CAGEKID (241669)Funder: European Union’s Framework Programme For Research and Innovation Horizon 2020 under the Marie Sklodowska-Curie grant agreement no. 703543Funder: Michael & Susan Dell Foundation; Mary K. Chapman Foundation; CCSG Grant P30 CA016672 (Bioinformatics Shared Resource); ITCR U24 CA199461; GDAN U24 CA210949; GDAN U24 CA210950Funder: European Commission's H2020 Programme, project SOUND, Grant Agreement no 633974Funder: Spanish Government (SEV 2015-0493) BSC-Lenovo Master Collaboration Agreement (2015)The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation

    In Vivo RNAi Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling

    Get PDF
    We used an in vivo small hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase Syk. In contrast, loss of Itgb3 in normal hematopoietic stem and progenitor cells did not affect engraftment, reconstitution, or differentiation. Finally, using an Itgb3 knockout mouse model, we confirmed that Itgb3 is dispensable for normal hematopoiesis but is required for leukemogenesis. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant P01 CA108631)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant RC1 CA145229)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant R01 CA140292)National Institutes of Health (U.S.) (Harvard Stem Cell Institute. GlaxoSmithKline. Grant CA148180
    corecore