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SUMMARY

Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial 

transplantation in animal models, and elimination of this cell population is required for curative 

therapies. Here, we describe a series of pooled, in vivo RNA interference (RNAi) screens to 

identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) 

with genetically- and phenotypically-defined LSCs. These screens reveal the heterodimeric, 

circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and 

in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, 

including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We 
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find that both normal and malignant hematopoietic cells harbor an intact clock with robust 

circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the 

pathway. Our findings establish a role for the core circadian clock genes in AML.

INTRODUCTION

Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic stem and progenitor 

cells (HSPCs) characterized by enhanced proliferation and impaired differentiation. 

Recurrent mutations in transcription factors (TFs) and epigenetic regulators identified in 

AML (Dohner et al., 2015; Ley TJ, 2013) suggest that aberrant transcriptional circuits are a 

common feature of leukemogenesis. Collectively, these circuits drive oncogenic gene 

expression programs that inhibit differentiation and activate self-renewal, generating 

leukemia stem cells (LSCs) responsible for the initiation and propagation of disease (Chao et 

al., 2008; Reya et al., 2001; Somervaille and Cleary, 2006).

In leukemias with rearrangements of the Mixed Lineage Leukemia (MLL) gene, activation 

of a self-renewal circuit involving the Hox gene cluster is a key aspect in the transformation 

of committed myeloid progenitor cells (Krivtsov et al., 2009). Studies have identified 

multiple transcription factor dependencies within this circuitry, including HoxA9, Meis1, β-
Catenin, Myc, and Myb, demonstrating that re-wired transcriptional circuits in LSCs may be 

targeted by blocking the activity of single TFs (Faber et al., 2009; Wang et al., 2010; Wong 

et al., 2007; Zuber et al., 2011a). Although both LSCs and normal hematopoietic stem cells 

(HSCs) share the hallmark feature of self-renewal, differences in their transcriptional wiring 

and the degree of functional redundancy within their stemness circuits may offer selective 

therapeutic opportunities (Huntly and Gilliland, 2005; Novershtern et al., 2011).

Recent studies demonstrate that leukemia-specific targets may be identified using short-

hairpin RNA (shRNA) screens to interrogate multiple genes in primary AML cells in vivo 
(Jaras et al., 2014; Miller et al., 2013; Zuber et al., 2011b). These screens employ disease 

models that reflect the phenotypic and functional cellular heterogeneity observed in human 

AML (Lapidot et al., 1994) and aim to study leukemia cells in the context of the niche (Lane 

et al., 2009; Schepers et al., 2015). In vivo screening using primary cell models enables the 

identification of both cell autonomous and cell non-autonomous mechanisms relevant to 

disease biology. We therefore used pooled, in vivo shRNA screening to identify transcription 

factor dependencies in leukemia stem cells.

RESULTS

Pooled In Vivo RNA Interference Screening in LSCs

To identify essential TFs in leukemia and to highlight transcriptional mechanisms of self-

renewal in LSCs, we performed an in vivo RNA interference (RNAi) screen using a serial 

transplantation model of MLL-AF9-driven, myelomonocytic AML derived from dsRed+ 

mice (Figure S1A). LSCs in this model are aggressive, immunophenotypically-defined, and 

may be enriched by prospectively sorting dsRed-labeled cells with high expression of the c-

Kit cell surface marker (Hartwell et al., 2013) (Figure S1B). The short-latency, high 
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penetrance quaternary transplant leukemias are highly enriched for LSCs and are suitable for 

in vivo screening (Miller et al., 2013).

Given the limited number of genes that can be effectively examined in such an in vivo 
screen, we first identified candidate TFs on the basis of gene expression (Bullinger et al., 

2004; Chen et al., 2008; Krivtsov et al., 2009; Metzeler et al., 2008; Novershtern et al., 

2011; Somervaille et al., 2009; Valk et al., 2004; Wang et al., 2010). We selected DNA-

binding proteins that have higher expression in stem cells (LSCs or HSCs) compared to 

myeloid progenitor cells and are co-expressed with the canonical LSC regulators HoxA9 and 

Meis1. The top 152 genes, based on this analysis, were selected for the screen (Table S1A).

To test the functional importance of these candidate genes, we generated a custom pool of 

770 lentiviral shRNAs (approximately 5 shRNAs per gene) and 7 control shRNAs that lack 

complementarity with any known murine genes. Freshly sorted quaternary transplant 

leukemia cells were transduced with 6 subpools of lentiviral shRNAs. An aliquot of these 

cells was banked 24 hours later, and the remainder was transplanted into sublethally 

irradiated mice (5 replicate mice per subpool). Two weeks after transplantation, dsRed+ 

leukemia cells were banked from the bone marrow of moribund recipient mice (Figure S1C). 

Genomic DNA was harvested from both banks of cells and shRNAs were PCR amplified 

and sequenced on the Illumina platform (Moffat et al., 2006).

We compared the quantitative representation of shRNAs in the input and leukemic bone 

marrow samples, and observed strong concordance between biological replicates (Figures 

1A and S1D). We identified 35 transcriptional regulators targeted by at least 3 shRNAs 

depleted greater than 20-fold (Table S1B), indicating that these genes are essential for AML 

cells in vivo. Top hits from the screen are established regulators of LSC function, including 

HoxA9, Meis1, β-Catenin, Pbx1, and Myc (Figure 1B). Other genes that scored are 

implicated in myeloid specification (PU.1), Myc activity (Mlxip), PML bodies (Pml, Mzf1, 

Trim27, Rere), Mef2c signaling (Mef2c, Foxj3), and the circadian rhythm (Clock and 

Bmal1). For key hits, we validated that top scoring shRNAs effectively decrease expression 

of their target gene (Figure S1E).

Clock and Bmal1 are Required for Leukemia Cell Growth

Two hits from our in vivo screen were Clock and Bmal1, encoding bHLH domain-

containing TFs that regulate transcription as a heterodimer (Huang et al., 2012). Multiple 

shRNAs targeting Clock or Bmal1 were depleted greater than 20-fold in vivo, with several 

shRNAs depleted up to 1000-fold (Figure 1B). Clock and Bmal1 are core components of an 

autoregulatory loop that drives robust oscillations in gene expression to regulate circadian 

physiology (Partch et al., 2014; Wager-Smith and Kay, 2000). In the hematopoietic system, 

the circadian clock regulates HSC egress from the bone marrow microenvironment 

(Mendez-Ferrer et al., 2008), hematopoietic engraftment (D’Hondt et al., 2004; Rolls et al., 

2015), and bone marrow mitotic activity (Clark and Korst, 1969; Smaaland et al., 1991). 

Cell autonomous and cell non-autonomous functions of the circadian rhythm in leukemia 

have not been rigorously established.
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We validated a role for Clock and Bmal1 in leukemia in vivo with shRNAs co-expressed 

with GFP from single lentiviral vectors. We transduced murine MLL-AF9 leukemia cells 

with individual shRNAs, transplanted the cells into sublethally irradiated recipient mice, and 

compared the percentage of GFP+ leukemia cells before transplant and after 2 weeks in vivo. 

GFP+ cells expressing Clock or Bmal1 shRNAs were strongly depleted in vivo, while cells 

expressing the luciferase (Luc) control shRNA were stable over time (Figure 1C). To 

evaluate whether this effect is independent of the bone marrow microenvironment or cell 

engraftment, we performed an equivalent experiment in vitro with cytokine supplementation 

(IL3, IL6, and SCF). Similar to the phenotype in vivo, GFP+ cells were depleted over 12 

days in culture following transduction with Clock or Bmal1 shRNAs but not with the Luc 
control (Figure 1D).

To account for possible off-target effects of the shRNAs, we performed a cDNA rescue 

experiment. We generated a retroviral vector that co-expresses GFP and a mutant Bmal1 
cDNA with silent point mutations in the shRNA binding sites. We sequentially transduced 

murine leukemia cells with the rescue vector and Bmal1 shRNAs, followed by puromycin 

selection of shRNA-expressing cells. In this experiment, an increase in the percentage of 

GFP+ cells reflects selection for the shRNA-resistant Bmal1 cDNA and confirms on-target 

effects. Indeed, we observed a significant increase in the GFP+ fraction in vitro for two 

Bmal1 shRNAs (A1 and A6) normalized to the Luc control (Figure 1E).

As an added confirmation of specificity, we used CRISPR-Cas9-based genome editing to 

introduce loss-of-function mutations in the Bmal1 gene in primary murine leukemia cells. 

We transduced quaternary transplant MLL-AF9 cells with lentiviral SFFV-driven Cas9 
followed by puromycin selection of cells with stable Cas9 expression (Heckl et al., 2014). 

Leukemia cells were then transduced with a separate lentiviral vector that co-expresses 

RFP657 and a single guide RNA (sgRNA) targeting luciferase, Bmal1, or HoxA9 as a 

positive control. Consistent with the shRNA results, a sgRNA targeting Bmal1 was 

progressively depleted (Figures 1F–G and S1F).

These data demonstrate that Bmal1 and its heterodimeric partner Clock are functionally 

required for LSCs. Accordingly, we found that Bmal1 expression is induced by MLL-AF9 
(Figure S1G) and is correlated with c-Kit, a marker of LSCs in our serial transplantation 

model of AML (Figures 2A and S2A–B; Table S2).

Circadian Disruption Induces Myeloid Differentiation and Impaired Cell Cycle Progression

We next examined the consequences of acute disruption of the circadian rhythm in AML 

using a small molecule. SR9011 is a potent and specific agonist of the nuclear hormone 

receptors RevErb α and Rev-Erb β, which inhibit Bmal1 transcription via a feedback loop 

(Burris et al., 2013; Solt et al., 2012). Treatment of quaternary transplant MLL-AF9 cells 

with SR9011 for 3 days in vitro resulted in a dose-dependent reduction in cell viability 

(EC50 = 1.8 μM) (Figure 2B). In agreement with known roles of Rev-Erb α and Rev-Erb β 

within the circadian pathway, short duration treatment of leukemia cells with the drug 

resulted in decreased expression of Bmal1 and its target gene Per2 (Figure 2C). In addition, 

we observed dose-dependent suppression of key regulators LSC self-renewal (HoxA9, 
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Meis1, Ctnnb1), indicating that the circadian rhythm circuitry influences functions related to 

stemness (Figure 2D).

Consistent with these observations, we found that Clock or Bmal1 shRNAs in leukemia cells 

induce morphologic changes of monocytic differentiation, including decreased nuclear to 

cytoplasmic ratio and enhanced granularity (Figure 2E). Using flow cytometry, we observed 

reduced cell surface expression of stem cell marker, c-Kit, and increased expression of 

myeloid differentiation markers, CD11b and Gr1 (Figures 2F–G and S2C). Additionally, 

leukemia differentiation following circadian gene knockdown is associated with a reduction 

in the percentage of actively dividing cells (S/G2/M) and an increase in the fraction of cells 

in G0/G1 (Figures 2H and S2D).

Murine Leukemia Cells Harbor a Functional Circadian Clock

Our finding that AML cells are dependent on Clock and Bmal1 expression implies that 

leukemia cells, and perhaps their normal hematopoietic counterparts, harbor an intact 

circadian clock that regulates rhythmic gene expression. To test this possibility in primary 

murine leukemia cells, we used reporter mice with an in-frame knock-in of luciferase at the 

3′ end of the Per2 gene (Yoo et al., 2004). We generated primary MLL-AF9 leukemias in the 

Per2::Luc genetic background, transplanted these leukemias into wild type (WT) recipients 

entrained to a 12 hour light - 12 hour dark (LD12:12) schedule, and followed the mice for 4 

to 6 weeks for the development of disease (Figures S2E–F). Continuous bioluminescence 

recordings of leukemic spleen explants from moribund mice revealed oscillations with a 

period of approximately 24 hours (Figure 3A). Thus, murine leukemia cells have the 

capacity for circadian-dependent gene expression independent of the suprachiasmatic 

nucleus (SCN), the dominant circadian pacemaker in the central nervous system. 

Additionally, continuous bioluminescence measurements of purified Per2::Luc MLL-AF9 
bone marrow cells suspended in liquid culture with cytokines confirmed that these rhythms 

are not dependent on an intact stromal microenvironment (Figure S2G).

Canonical Circadian Machinery Operates in Human AML Cells

We next examined whether the circadian circuitry is intact in human AML, as it is in murine 

leukemia. We found that MLL-WT (SKM-1) and MLL-rearranged (THP-1) leukemia cell 

lines are highly sensitive to CLOCK and BMAL1 knockdown using multiple shRNAs 

(Figures 3B and S2H–I). In THP-1 cells, reciprocal co-immunoprecipitation assays 

demonstrated a physical association between CLOCK and BMAL1, as would be expected 

for cells with an intact circadian mechanism (Figure 3C).

To define a set of CLOCK/BMAL1 targets in human AML, we performed chromatin 

immunoprecipitation sequencing (ChIP-Seq) for both TFs. We called peaks individually for 

CLOCK (269 peaks) and BMAL1 (9584 peaks) in THP-1 cells and defined a high-

confidence set of 140 regions associated with 229 genes bound by both factors (Figure S2J; 

Table S3A). Pathway analysis revealed that CLOCK/BMAL1 targets are significantly 

enriched for genes involved in the circadian rhythm (“Circadian Rhythm – Mammal”; 

MSigDB; Hyper FDR 2.09E-8), including BHLHE40/41, CRY1/2, NR1D1, PER1/2, and 

DBP (Figure 3D; Table S3B). Gene ontology (GO) analysis demonstrated that high-
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confidence loci are involved in diverse cellular processes, including metabolism, 

differentiation, immune function, cell cycle regulation, and proliferation, as reported in other 

tissue types (Miller et al., 2007; Richards and Gumz, 2012) (Figure 3E). In addition, we 

found CLOCK/BMAL1 binding to Wnt/β-Catenin pathway genes (WNT11, FZD3, WISP1, 
CSNK2A3) and several genes associated with cancer (HRAS, CEBPA, ZEB1, EGLN2). E-

Box sites are among the most enriched motifs in the high-confidence binding regions, 

consistent with the known specificity of these TFs (Weirauch et al., 2014) (Figure 3F; Table 

S3C).

Identification of Additional Circadian Regulators in Leukemia Cells

Given evidence for binding of CLOCK/BMAL1 to multiple conserved circadian genes in 

human AML cells, we hypothesized that additional components of the pathway are required 

for LSC function. We evaluated this possibility by performing an in vivo minipool screen in 

murine MLL-AF9 cells with shRNAs targeting 22 genes in the canonical circadian pathway, 

including Clock and Bmal1 and several key regulators. This screen confirmed a role for 

Clock/Bmal1 and highlighted additional pathway genes (Per1/3, Cry1, and Csnk1e/2a1/2b), 

raising the possibility that both positive and negative elements of the circadian 

transcriptional-translational feedback loop impact LSC function (Figure 3G; Table S4). 

Interestingly, a subset of the hits from this screen (Per1, Cry1) are directly bound by the 

Clock/Bmal1 complex and may represent essential mediators of Clock and Bmal1 activity in 

AML (Figure 3G).

Role of the Circadian Rhythm Pathway in Normal Hematopoiesis

Having established a functional requirement for Clock and Bmal1 in leukemia, we next 

examined their roles in normal hematopoiesis. Continuous bioluminescence studies with 

spleen explants from healthy Per2::Luc transgenic mice entrained to LD12:12 revealed 

persistent oscillations with a period of approximately 24 hours (Figure 4A). The circadian 

activity observed in these mice could reflect either rhythms in hematopoietic cells or 

oscillations in extra-hematopoietic cells within the spleen. We thus performed bone marrow 

transplantation experiments to study the rhythm specifically in HSPCs and their progeny. We 

harvested bone marrow from healthy Per2::Luc mice and transplanted c-Kit enriched cells to 

lethally irradiated WT mice. Continuous bioluminescence recordings of spleen explants 

from these mice revealed robust rhythms with a period of approximately 24 hours (Figure 

4B).

The presence of an intact clock in normal hematopoietic cells, in conjunction with evidence 

that Clock and Bmal1 are more highly expressed in HSPCs compared to differentiated cells 

(Figures 4C–D), raises the possibility that the circadian rhythm impacts HSC function. We 

sought to determine the effect of circadian gene disruption on normal hematopoiesis using 

germline Bmal1 knockout mice that lack a functional circadian pacemaker in all tissues 

(Bunger et al., 2000). These mice display premature death, infertility, organ shrinkage, age-

related pathologies such as cataracts, and increased reactive oxygen species, indicating that 

Bmal1 may be required for normal tissue stem cell homeostasis (Alvarez et al., 2008; 

Kondratov et al., 2006; Kondratov et al., 2009).
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We used multi-parameter flow cytometry (Figures S3A–D) to assess Bmal1−/− mice (Figure 

S4A) for defects in hematopoietic function and/or differentiation. We first gated lineage−, 

Scal+, c-Kit+ (LSK) cells, with further separation based on the SLAM markers CD48 and 

CD150, to examine the stem cell compartment in these mice (Kiel et al., 2005). We 

identified a significant reduction in the percentage of both LSK cells and long-term HSCs 

(LT-HSCs) in Bmal1−/− animals compared to age-matched Bmal1+/− controls (Figures 4E–

G; Table S5). However, we did not observe a corresponding reduction in the frequency of 

mature myeloid or lymphoid cells in the bone marrow or spleens of Bmal1−/− mice, possibly 

due to compensatory mechanisms (Figure 4H and S4B). Similarly, an evaluation of myeloid 

progenitor cells did not reveal significant abnormalities in common myeloid progenitor 

(CMP), granulocyte monocyte progenitor (GMP), or megakaryocyte erythroid progenitor 

(MEP) populations (Figure 4I; Table S5).

Because germline Bmal1−/− mice have disrupted central pacemaker function, globally 

altered molecular and behavioral rhythms, and diverse tissue phenotypes, the stem cell 

finding in these mice may be related to either cell autonomous or cell non-autonomous 

effects. Consequently, we sought to highlight cell intrinsic effects by inactivating Bmal1 in 

adult hematopoiesis with preservation of the circadian rhythm in the SCN and non-

hematopoietic peripheral tissues.

We examined the role of Bmal1 in hematopoietic cells in competitive repopulation assays 

using conditional knockout mice in which LoxP sites flank the critical bHLH domain of 

Bmal1 (Storch et al., 2007). We mixed WT cells expressing CD45.1 with equal numbers of 

either Bmal1f/f; MxCre+ cells or Bmal1+/+; MxCre+ cells marked by CD45.2, and 

transplanted the mix to lethally irradiated CD45.1+ recipient mice. Following engraftment, 

we treated the full cohort of mice with polyinosinic-polycytidylic acid (poly(I:C)), inducing 

Cre expression and Bmal1 inactivation in Bmal1f/f; MxCre+ hematopoietic cells. We serially 

measured the peripheral blood CD45.2 chimerism by flow cytometry over 24 weeks in vivo, 

and did not identify significant abnormalities in repopulating ability or multi-lineage 

differentiation of Bmal1 knockout HSPCs compared to control HSPCs (Figures 4J and S4C–

F). Importantly, we did not detect differences in the frequencies of CD45.2-derived LSK 

cells or LT-HSCs between the 2 groups, and no significant hematopoietic phenotypes were 

observed with secondary transplantation (Figures 4K–L and S4G–H).

Consistent with these data, we found that normal murine LSK cells are resistant to Bmal1 
knockdown with multiple shRNAs (Figure S4I). In addition, analyses of non-competitive 

Bmalf/f; MxCre+ mice and germline Per2 mutant (Per2m/m) mice (Zheng et al., 1999) did not 

reveal gross hematopoietic deficits (Figures S5A–I). Collectively, these studies demonstrate 

that loss of Bmal1 (or Per2) in adult hematopoiesis is well tolerated.

Genetic Knockout Confirms a Leukemia-Specific Dependence on Bmal1

We used the Bmal1 conditional knockout model to evaluate the phenotypic consequences of 

complete loss of Bmal1 activity on leukemia maintenance. We generated murine MLL-AF9 
leukemias in the Bmal1f/f background and retrovirally transduced the cells with PIG-Cre, 

resulting in efficient excision (Figure 5A). Consistent with our shRNA and CRISPR-Cas9 
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results, homozygous Bmal1 loss resulted in an in vitro leukemia growth defect compared to 

the Bmal1+/+ control (Figure 5A).

We next evaluated the effect of Bmal1 inactivation on the initiation and propagation of 

MLL-AF9 leukemia. We treated Bmal1f/f; MxCre+ or Bmal1+/+; MxCre+ animals with 

poly(I:C), harvested bone marrow from these mice, and confirmed excision (Figure S5J). C-

Kit enriched cells from both groups of mice were retrovirally transduced with MIG-MLL-
AF9 and transplanted into lethally irradiated WT recipients. Although we did not observe 

differences in leukemia latency or overall survival between the primary transplant groups, 

secondary recipient mice receiving Bmal1−/− MLL-AF9 cells lived significantly longer than 

mice receiving Bmal1+/+ MLL-AF9 cells (Figure 5B). Thus, Bmal1 is required for disease 

propagation.

Given these findings, in conjunction with the HSC knockout studies, we reasoned that AML 

cells may be differentially sensitive to circadian disruption with the Rev-Erb α/β agonist 

SR9011. To test this hypothesis, we measured the viability of quaternary transplant MLL-
AF9 cells and normal murine LSK cells following treatment with SR9011 for 3 days in 
vitro. We found that murine leukemia cells are more sensitive than HSPCs to various 

concentrations of drug (Figure 5C). Similarly, SR9011 had greater activity in human AML 

cell lines (NOMO-1 and MOLM-13) compared to CD34+ cord blood cells purified from 

healthy donors (Figure 5D). These data indicate that myeloid leukemia cells, in contrast to 

normal hematopoietic cells, are highly sensitive to perturbation of the core circadian rhythm 

genes.

Finally, we interrogated genomic data from The Cancer Genome Atlas (TCGA) to determine 

if central circadian components (Clock, Bmal1, and Per2) are somatically disrupted in 

human AML (Ley TJ, 2013). In the 191 cases in the TCGA AML dataset, we did not 

identify mutations or homozygous deletions in Clock, Bmal1, or Per2 (Figure S5K), 

indicating that key components of the circadian circuitry are intact in AML.

DISCUSSION

Cell non-autonomous roles for the circadian rhythm in hematopoiesis are well established 

(Casanova-Acebes et al., 2013; Lucas et al., 2008; Mendez-Ferrer et al., 2010; Mendez-

Ferrer et al., 2008; Nguyen et al., 2013). Our findings demonstrate a previously 

unrecognized role for the core circadian clock genes in AML. We found that disruption of 

the circadian circuitry, mediated by shRNA knockdown, targeted mutation, or genetic 

deletion of key TFs, impairs the growth of murine leukemia cells in vivo and human cell 

lines in vitro.

We evaluated the cellular mechanisms of leukemia depletion and found that circadian 

perturbation induces myeloid differentiation, including a reduction in cell surface expression 

of c-Kit, a marker of LSCs. Using the Rev-Erb α/β small molecule agonist SR9011, we 

identified a dose-dependent transcriptional down-regulation of HoxA9, Meis1, and Ctnnb1; 

together, these self-renewal TFs cooperate to induce myeloid leukemia in mice and are 

broadly required in multiple AML models (Heidel et al., 2012; Wang et al., 2010). Similarly, 
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in the skin, the circadian clock regulates the expression of stem cell self-renewal genes, 

including those in the Wnt/β-catenin pathway, and loss of Bmal1 results in stem cell 

arrhythmia in squamous cell tumors (Janich et al., 2011). Thus, links between the circadian 

rhythm and self-renewal pathways may be conserved in multiple tissue contexts.

We also found that Clock and Bmal1 regulate cellular proliferation and cell cycle 

progression in AML cells, consistent with phenotypes reported in other systems (Grechez-

Cassiau et al., 2008; Matsuo et al., 2003; Miller et al., 2007). Although some studies indicate 

that specific clock genes may act as tumor suppressors (Fu et al., 2002), other studies 

suggest a more complex relationship between the circadian rhythm and cancer (Antoch et 

al., 2013). Our finding that AML cells require Clock and Bmal1 expression reinforces recent 

work demonstrating tumor-maintaining roles for the core circadian rhythm genes in a variety 

of cancers (Antoch et al., 2008; Cui et al., 2015; Elshazley et al., 2012; Janich et al., 2011; 

Li et al., 2013; Ozturk et al., 2009; Xiao et al., 2014).

Furthermore, targets and binding partners of CLOCK and BMAL1 are relevant to the 

biology and survival of AML cells. A previous study demonstrated that CLOCK and 

BMAL1 form a complex with wild type MLL1, a histone methyltransferase required for 

MLL-AF9 leukemia (Katada and Sassone-Corsi, 2010; Thiel et al., 2010). This association 

results in cyclical H3K4 trimethylation, establishing a permissive chromatin state for 

genome-scale circadian transcription (Koike et al., 2012). If the critical interaction domain 

of MLL1 is preserved in MLL fusions, CLOCK and BMAL1 may physically bind the MLL-

AF9 complex, which includes the H3K79 methyltransferase DOT1L, and target it to 

genomic loci required for leukemia survival (Bernt et al., 2011).

A critical feature of the circadian rhythm is oscillating gene expression in both the SCN as 

well as peripheral tissues. Peripheral circadian rhythms are cell-autonomous and occur in the 

absence of external input (Ko and Takahashi, 2006). Using Per2::Luc knock-in mice, we 

confirmed that MLL-AF9 leukemia cells have the capacity to cycle. Continuous 

bioluminescence recordings of leukemic tissue explants cultured in isolation demonstrated 

persistent oscillations with a period of approximately 24 hours, indicating the presence of an 

intact clock in primary AML cells. Rhythms were maintained with serial transplantation, 

and remarkably, were present in moribund mice with advanced hematologic disease.

Consistent with cyclical gene expression patterns, canonical circadian regulatory 

mechanisms are preserved in leukemia. ChIP-Seq studies demonstrated that the CLOCK/

BMAL1 complex binds to multiple known circadian pathway genes, and binding occurred 

with specificity to E-box regulatory elements (Yu et al., 2006). The MYC/MAX complex 

also has specificity for E-box motifs, indicating that MYC targets may display circadian-

dependent regulation and contribute to cancer phenotypes. In addition, a subset of Clock and 

Bmal1 targets, including Per1 and Cry1, were highlighted in a circadian pathway minipool 

screen as genes required for MLL-AF9 leukemia. Given diverse outputs of the peripheral 

clock in most tissues, it is likely that a set of targets, rather than a single gene, modulates 

LSC function.
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Although rhythmic, circadian-dependent gene expression was present in both normal cells 

and in leukemia, murine genetic knockout studies indicate that Bmal1 is not absolutely 

required for normal hematopoietic function. Interestingly, in the setting of germline loss of 

Bmal1, we observed a reduction in the frequency of LSK cells and LT-HSCs. Despite altered 

stem cell numbers, mature myeloid and lymphoid cells in both the bone marrow and spleen 

were grossly normal and recent work indicates that HSCs from these mice have preserved 

function (Ieyasu et al., 2014). Additionally, we found that selective loss of Bmal1 in adult 

hematopoiesis does not significantly alter HSPC differentiation or multilineage repopulating 

activity in competitive transplantation assays.

In contrast to normal cells, leukemia cells in the MLL-AF9 model depend on Bmal1 
expression. Genetic deletion of Bmal1 in established leukemias results in a competitive 

disadvantage. Leukemia initiation experiments demonstrated that primary leukemias may be 

derived from Bmal1-deficient HSPCs transformed with MLL-AF9. However, serial 

transplantation revealed that loss of Bmal1 increases leukemia latency and impairs disease 

propagation. Consistent with the knockout studies, we found that AML cells, as compared to 

normal HSPCs, are differentially sensitive to circadian perturbation with SR9011.

It remains to be determined if the rhythms of HSCs and LSCs are similar in vivo. 

Differences in these rhythms could be exploited for chronotherapy, in which chemoradiation 

is dosed at a time of day when leukemia cells are selectively sensitive due to cell cycle status 

and/or expression of specific clock output genes. Additionally, drugs that alter the circadian 

rhythm may sensitize leukemia cells to traditional anti-cancer therapies and facilitate 

targeting of cancer stem cells to eliminate disease more effectively.

EXPERIMENTAL PROCEDURES

Mouse Maintenance, Transplants, and Genotyping

All mouse experiments were performed with an IUCAC-approved animal protocol at our 

facility. Specific strains used in this study include C57BL/6J (Jackson Labs), B6.SJL 
(Taconic), Actin-dsRed (006051, Jackson Labs), B6.129S4(Cg)-Arntltm1Weit (007668, 

Jackson Labs), B6.129-Arntltm1Bra (009100, Jackson Labs), B6.129S6-Per2tm1Jt (006852, 

Jackson Labs), and B6.Cg-Per2tm1Brd; Tyrc−Brd/J (003819, Jackson Labs). CD45.1+ cells 

isolated from B6.SJL mice (Taconic) were used for the competitive transplantation studies. 

For all other mouse experiments, C57BL/6J mice (Jackson Labs) were used as controls. 

Prior to tail vein or retro-orbital transplantation, mice were sublethally (1 × 6 Gy [600 rads]) 

or lethally (1 × 9.5 Gy [950 rads]) irradiated as specified. A multiplexed PCR reaction was 

used to genotype Bmal1f/f mice and to assess the efficiency of excision, as described 

previously (Storch et al., 2007). Per2::Luc knock-in mice were genotyped using primers 

oIMR6588, oIMR6589, and oIMR6590 according to Jackson Labs protocols.

All mice used in this study were maintained on a standard LD12:12 schedule. Bone marrow 

and spleen harvests for murine knockout and leukemia studies were generally performed 

between 1 and 5 hours after the initiation of light (Zeitgeber time, ZT1 to ZT5). Control and 

experimental cohorts were always harvested at the same time of day.
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Quaternary Transplant MLL-AF9 Leukemia Model

GMPs were isolated from the bone marrow of Actin-dsRed mice, as described previously 

(Krivtsov et al., 2006). GMPs were spinfected twice (2500 rpm, 90 min, 37° C) with MSCV-
MLL-AF9-Neo retrovirus in SFEM (Stem Cell Technologies) supplemented with murine 

IL3 (mIL3, 10 ng/ml, Peprotech), murine IL6 (mIL6, 10 ng/ml, Peprotech), and murine SCF 

(mSCF, 10 ng/ml, Peprotech), followed by transplantation to lethally irradiated WT 

recipients. After disease onset, leukemic spleen cells were harvested and subsequently 

transplanted to sublethally irradiated secondary recipients. Two additional rounds of 

transplantation resulted in the generation quaternary transplant leukemias with high 

penetrance and short disease latency (Hartwell et al., 2013). Flow cytometry was performed 

using antibodies for the lineage markers CD3, CD4, CD8, B220, CD19, IL7R, and Ter119 

(Caltag), c-Kit (17-1172-83, eBioscience), Sca-1 (11-5981-82, eBioscience), CD34 

(11-0341-85, eBioscience), and CD16/32 (25-0161-82, eBioscience).

Isolation of Leukemia Stem Cells

The long bones and hips of moribund quaternary transplant leukemic mice were harvested, 

cleaned, crushed, and sequentially passed through 100 μM and 70 μM filters (Falcon). 

Following red blood cells lysis (Qiagen), leukemic bone marrow cells were stained with 

APC-conjugated anti-c-Kit (clone 2B8; eBioscience) and Hoechst 33258 (H21491, 

Invitrogen) in PBS with 2% FBS (Omega). LSC-enriched populations were isolated by 

sorting Hoechst−, dsRed+, c-Kithigh (top 10–20 percent) cells (FACS Aria II, Becton 

Dickinson). In the quaternary transplant MLL-AF9 model, the c-Kithigh fraction is 

sufficiently enriched for leukemia-initiating cells, as described previously (Hartwell et al., 

2013; Miller et al., 2013). Quaternary transplant leukemia cells were used for experiments 

presented in Figures 1A–G, 2B–H, and 5C.

ChIP-Seq

ChIP-Seq was performed as previously described (Kowalczyk et al., 2012) with minor 

modifications. Specifically, THP-1 cells were fixed in 2 mM EGS (Thermo Scientific) for 30 

or 60 minutes followed by 1% formaldehyde for 30 or 15 minutes at RT, respectively. 

Chromatin was sonicated to a size less than 500 bp and then incubated overnight with either 

anti-Clock IgG (ab3517, Abcam) or anti-Bmal1 IgG (ab3350, Abcam). ChIP-Seq libraries 

were prepared through the process of DNA end-repair (Epicentre), A-base addition, and 

adaptor ligation using indexed Illumina adaptors followed by enrichment PCR. All 

enzymatic steps were carried out using enzymes from New England Biolabs. Final libraries 

were pooled, size selected, and sequenced on HiSeq2500 with 25 paired-end reads.

ChIP-Seq Data Analysis

Paired-end reads for both ChIP and input samples were mapped to the hg19 version of the 

human genome using Bowtie 2 (Langmead and Salzberg, 2012), only keeping read pairs that 

map uniquely to the genome. Peaks were called using findPeaks from the Homer suite 

(v4.7.2) (Heinz et al., 2010) with “-style factor -fdr 0.01 -LP 0.01 -P 0.1” parameters and 

using input data as background. The intersection of peaks for CLOCK and BMAL1 was 

used to define a high-confidence set of binding sites. Identification of target genes associated 
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with these binding sites and functional enrichment analysis were completed using GREAT 

(v2.0.2) (McLean et al., 2010). H3K4me3 peaks (SRA accession ERS148524) were set as 

background to control for activity/inactivity of genes. We identified 269 peaks associated 

with 406 genes for CLOCK and 9584 peaks associated with 8027 genes for BMAL1. 

Focusing on the intersection of CLOCK and BMAL1 peaks, we identified 140 binding sites 

associated with 229 genes. Motif analysis of high-confidence sites was performed using 

RSAT peak-motifs (Thomas-Chollier et al., 2012). Gene ontology analysis (Ashburner et al., 

2000) was completed using the GO Slim web portal (http://go.princeton.edu). ChIP-Seq data 

presented in this study may be accessed on Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo) with GEO ID GSE70686.

Statistics

Kaplan Meyer analysis (Mantel-Cox test) and EC50 calculations were completed using 

GraphPad Prism 6. Statistical analysis was completed using R (www.r-project.org) or Excel 

(Microsoft) software. Mean values are shown (unless otherwise specified) and error bars 

represent standard error of the means. Flow cytometry gating and MFI analysis were 

completed using FlowJo 7.6.1 software. Statistical significance was determined using a two-

sided Student’s t-test (*p<0.05, **p<0.01, ***p<0.001).

Detailed descriptions of additional experimental and analytical methods are included in the 

Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clock and Bmal1 are required for leukemia cell growth
(A) Pooled RNAi screen identified shRNAs depleting murine MLL-AF9 leukemia cells in 
vivo. Heat map depicting the log2 transformed representation of individual shRNAs (rows) 

in the input replicates (n=5, left columns) and leukemic bone marrow replicates (n=5, right 

columns). Depleted shRNAs are shown in blue. (B) Performance of shRNAs targeting 

negative control genes (black), positive control genes (red), and circadian rhythm genes 

(blue). Plots depict the log10 median fold change for each shRNA. Fraction of shRNAs with 

fold depletion > 20 is shown. (C–D) Fold change in the percentage of GFP+ murine MLL-
AF9 leukemia cells transduced with single Clock (C2, C6, C12) (n=3), Bmal1 (A1, A6, 
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A11) (n=3), or Luc (n=3) shRNAs co-expressed with GFP (C) in vivo or (D) in vitro. (E) 
Phenotypic rescue of Bmal1 knockdown with an shRNA-resistant Bmal1 cDNA in murine 

MLL-AF9 leukemia cells. (F) In vitro tracking of Cas9-expressing murine MLL-AF9 
leukemia cells transduced with sgRNAs targeting Bmal1 (sgBmal) (n=3), HoxA9 
(sgHoxA9) (n=3), or Luc (sgLuc) (n=3) co-expressed with RFP657. (G) Detection of in-

frame and out-of-frame mutations at the Bmal1 locus in cells expressing Cas9 and sgBmal1 

by Sanger sequencing of individual clones. *p<0.05, **p<0.01, ***p<0.001, determined by 

a two-sided Student’s t-test. Mean values are shown unless otherwise specified, and error 

bars represent +/− S.E.M.
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Figure 2. Disruption of the circadian rhythm machinery induces leukemia differentiation
(A) RNA-Seq analysis of Bmal1 expression in c-Kithigh (top 10 percent, n=3) and c-Kitlow 

(bottom 10 percent, n=3) leukemic bone marrow cells from primary, secondary, tertiary, and 

quaternary transplant MLL-AF9 mice. TPM, transcripts per million. (B) Dose response 

curve showing relative viability (y-axis) of murine MLL-AF9 leukemia cells treated for 3 

days with varying concentrations of SR9011 (x-axis, log scale) (n=3). (C–D) Expression of 

(C) circadian rhythm genes (Bmal1, Per2) or (D) regulators of LSC self-renewal (HoxA9, 

Meis1, Ctnnb1), measured by quantitative RT-PCR following treatment of murine MLL-AF9 
leukemia cells with 3.125 μM SR9011 (n=4), 6.25 μM SR9011 (n=4), or DMSO (n=4) for 

24 hours. (E) Wright-Giemsa staining of murine MLL-AF9 leukemia cells transduced with 

single Clock (C2, C12) or Bmal1 (A1, A6) shRNAs revealed monocytic differentiation 

(black arrows). (F) Representative flow cytometry histograms of c-Kit cell surface 

expression (x-axis, log scale) in GFP+ murine MLL-AF9 leukemia cells expressing Clock 
(C2, C12), Bmal1 (A1, A6), or Luc shRNAs. (G) Quantification of c-Kit cell surface 
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expression by median fluorescence intensity (MFI) analysis. (H) Hoechst33342 cell cycle 

analysis of murine MLL-AF9 leukemia cells transduced with Clock (C2, n=3), Bmal1 (A1, 

n=3), or Luc (n=3) shRNAs. Data for both transduced (GFP+) and untransduced (GFP−) 

cells within the same replicate are shown. *p<0.05, **p<0.01, ***p<0.001, determined by a 

two-sided Student’s t-test. Mean values are shown unless otherwise specified, and error bars 

represent +/− S.E.M.
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Figure 3. Canonical circadian regulatory mechanisms are intact in primary murine leukemia 
and human AML
(A) Continuous bioluminescence recording of a leukemic spleen explant from a WT 

secondary recipient mouse transplanted with Per2::Luc MLL-AF9 leukemia cells. (B) Cell 

titer glo assay showing viability of SKM-1 or THP-1 cells following transduction with 

shRNAs targeting CLOCK (D10, D12) (n=5), BMAL1 (F4, F5) (n=5), or LUC (n=5). Equal 

numbers of puromycin-selected cells were plated 3 days after transduction and followed for 

2 weeks in vitro. Data is normalized to the shLUC control at each timepoint. (C) CLOCK 

and BMAL1 reciprocal co-immunoprecipitation in THP-1 cells. (D) UCSC genome browser 

tracks of CLOCK (red) and BMAL1 (black) occupancy at the CRY1, NR1D1, PER1, and 
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DBP loci in THP-1 cells based on normalized ChIP-Seq read coverage. Track heights are 

indicated. (E) Gene ontology analysis of pathways represented by high-confidence CLOCK/

BMAL1 targets. Pathways of interest are highlighted in red. (F) RSEM motif enrichment 

analysis of high-confidence regions identified in CLOCK and BMAL1 ChIP-seq. (G) 
Minipool shRNA screen of 22 canonical circadian regulators in murine MLL-AF9 leukemia 

cells. Hits from the screen are shown in red and high-confidence Clock/Bmal1 ChIP-Seq 

targets are marked with a black arrow. Mean values are shown unless otherwise specified, 

and error bars represent +/− S.E.M.
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Figure 4. Bmal1 is dispensable for normal HSC function
(A–B) Continuous bioluminescence recording of spleen explant from (A) homozygous 

Per2::Luc transgenic mouse or (B) lethally irradiated WT mouse transplanted with c-Kit 

enriched Per2::Luc bone marrow. (C–D) Expression of (C) Clock or (D) Bmal1 in murine 

LSK cells (n=3), LK cells (n=3), and lineage+ cells (n=3) purified from wild type mice, as 

measured by qPCR. (E) Representative flow cytometry contour plots of LSK cells in the 

bone marrow of germline Bmal1−/− and Bmal1+/− mice. LSK frequency is presented as a 

percentage of viable whole bone marrow. (F–I) Quantification of (F) LSK cells, (G) LT-

HSCs, (H) lineage+ cells, and (I) myeloid progenitor cells in the bone marrow of germline 
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Bmal1−/− (n=6) and Bmal1+/− (n=6) mice. Data is presented as a percentage of viable whole 

bone marrow. (J) Peripheral blood CD45.2 chimerism in Bmal1+/+; MxCre+ (n=7) and 

Bmal1f/f; MxCre+ (n=6) competitive transplant mice following poly(I:C) treatment. (K–L) 
CD45.2 chimerism in the bone marrow LSK and LT-HSC compartments of Bmal1+/+; 

MxCre+ and Bmal1f/f; MxCre+ (K) primary or (L) secondary competitive transplant mice. 

*p<0.05, **p<0.01, ***p<0.001, determined by a two-sided Student’s t-test. Mean values 

are shown unless otherwise specified, and error bars represent +/− S.E.M.
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Figure 5. Genetic knockout models reveal a leukemia-specific dependence on Bmal1
(A) Top panel shows genotyping of Bmal1f/f and Bmal1+/+ MLL-AF9 leukemias before and 

after transduction with PIG-Cre. Dotted white line indicates spliced gel. Bottom panel shows 

normalized cell counts of Bmal1f/f (n=4) and Bmal1+/+ (n=4) MLL-AF9 leukemias 

transduced with PIG-Cre in vitro. Puromycin-selected cells were plated 84 hours after 

transduction and followed over time. (B) Bmal1f/f; MxCre+ mice and Bmal1+/+; MxCre+ 

controls were treated with poly(I:C) to induce hematopoietic-specific Cre expression. Bone 

marrow cells harvested from these mice were c-Kit enriched, transduced with MIG-MLL-
AF9, and transplanted to lethally irradiated WT recipient mice. The resulting Bmal1−/− or 

Bmal1+/+ MLL-AF9 leukemias were transplanted to sublethally irradiated secondary 

recipients. Kaplan-Meier survival curves for the primary and secondary transplants are 

shown. (C) Normalized cell counts of quaternary transplant MLL-AF9 cells (n=3) and 

murine LSK cells (n=3) following treatment with DMSO or SR9011 for 3 days in vitro. (D) 
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Cell titer glo assay showing normalized viability of NOMO-1 (n=3), MOLM-13 (n=3), and 

CD34+ cord blood cells (n=6) following treatment with DMSO or SR9011 for 4 days in 
vitro. *p<0.05, **p<0.01, ***p<0.001, determined by a two-sided Student’s t-test. Mean 

values are shown unless otherwise specified, and error bars represent +/− S.E.M.
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