19 research outputs found

    Adult zebrafish as a model organism for behavioural genetics

    Get PDF
    Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour

    A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    Get PDF
    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science

    Long-term habituation of the C-start escape response in zebrafish larvae

    No full text
    The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning—specifically, long-term habituation (LTH)—of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish’s hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory
    corecore