29 research outputs found
Current Status and Future Directions in Graft-Versus-Host Disease Prevention Following Allogeneic Blood and Marrow Transplantation in Adults
Graft-versus-host disease (GvHD) in its acute and chronic forms continues to represent a significant barrier to the success and wide-applicability of blood and marrow transplantation as a potentially curative treatment modality for a number of benign and malignant blood conditions. Presently, calcineurin inhibitor (CNI)-based regimens remain the most commonly used prevention strategy, although post-transplant cyclophosphamide is emerging as an alternative approach, and is providing a backbone for innovative CNI-free combinations. In this paper, we review the current strategies used for the prevention of GvHD, and highlight some of the developing and promising combinations
Trends in volumes and survival after hematopoietic cell transplantation in racial/ethnic minorities
ABSTRACT: There has been an increase in volume as well as an improvement in overall survival (OS) after hematopoietic cell transplantation (HCT) for hematologic disorders. It is unknown if these changes have affected racial/ethnic minorities equally. In this observational study from the Center for International Blood and Marrow Transplant Research of 79 904 autologous (auto) and 65 662 allogeneic (allo) HCTs, we examined the volume and rates of change of autoHCT and alloHCT over time and trends in OS in 4 racial/ethnic groups: non-Hispanic Whites (NHWs), non-Hispanic African Americans (NHAAs), and Hispanics across 5 2-year cohorts from 2009 to 2018. Rates of change were compared using Poisson model. Adjusted and unadjusted Cox proportional hazards models examined trends in mortality in the 4 racial/ethnic groups over 5 study time periods. The rates of increase in volume were significantly higher for Hispanics and NHAAs vs NHW for both autoHCT and alloHCT. Adjusted overall mortality after autoHCT was comparable across all racial/ethnic groups. NHAA adults (hazard ratio [HR] 1.13; 95% confidence interval [CI] 1.04-1.22; P = .004) and pediatric patients (HR 1.62; 95% CI 1.3-2.03; P < .001) had a higher risk of mortality after alloHCT than NHWs. Improvement in OS over time was seen in all 4 groups after both autoHCT and alloHCT. Our study shows the rate of change for the use of autoHCT and alloHCT is higher in NHAAs and Hispanics than in NHWs. Survival after autoHCT and alloHCT improved over time; however, NHAAs have worse OS after alloHCT, which has persisted. Continued efforts are needed to mitigate disparities for patients requiring alloHCT
Haploidentical vs. sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia
The role of haploidentical hematopoietic cell transplantation (HCT) using posttransplant cyclophosphamide (PTCy) for acute lymphoblastic leukemia (ALL) is being defined. We performed a retrospective, multivariable analysis comparing outcomes of HCT approaches by donor for adults with ALL in remission. The primary objective was to compare overall survival (OS) among haploidentical HCTs using PTCy and HLA-matched sibling donor (MSD), 8/8 HLAmatched unrelated donor (MUD), 7 /8 HLA-MUD, or umbilical cord blood (UCB) HCT. Comparing haploidentical HCT to MSD HCT, we found that OS, leukemia-free survival (LFS), nonrelapse mortality (NRM), relapse, and acute graft-versus-host disease (aGVHD) were not different but chronic GVHD (cGVHD) was higher in MSD HCT. Compared with MUD HCT, OS, LFS, and relapse were not different, but MUD HCT had increased NRM (hazard ratio [HR], 1.42; P = .02), grade 3 to 4 aGVHD (HR, 1.59; P = .005), and cGVHD. Compared with 7/8 UD HCT, LFS and relapse were not different, but 7/8 UD HCT had worse OS (HR, 1.38; P = .01) and increased NRM (HR, 2.13; P <_ .001), grade 3 to 4 aGVHD (HR, 1.86; P = .003), and cGVHD (HR, 1.72; P <_ .001). Compared with UCB HCT, late OS, late LFS, relapse, and cGVHD were not different but UCB HCT had worse early OS (<_18 months; HR, 1.93; P < .001), worse early LFS (HR, 1.40; P = .007) and increased incidences of NRM (HR, 2.08; P < .001) and grade 3 to 4 aGVHD (HR, 1.97; P < .001). Haploidentical HCT using PTCy showed no difference in survival but less GVHD compared with traditional MSD and MUD HCT and is the preferred alternative donor HCT option for adults with ALL in complete remission
Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation Using Post-Transplant Cyclophosphamide
Post-transplant cyclophosphamide (PTCy) has significantly increased the successful use of haploidentical donors with a relatively low incidence of graft-versus-host disease (GVHD). Given its increasing use, we sought to determine risk factors for GVHD after haploidentical hematopoietic cell transplantation (haplo-HCT) using PTCy. Data from the Center for International Blood and Marrow Transplant Research on adult patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myeloid leukemia who underwent PTCy-based haplo-HCT (2013 to 2016) were analyzed and categorized into 4 groups based on myeloablative (MA) or reduced-intensity conditioning (RIC) and bone marrow (BM) or peripheral blood (PB) graft source. In total, 646 patients were identified (MA-BM = 79, MA-PB = 183, RIC-BM = 192, RIC-PB = 192). The incidence of grade 2 to 4 acute GVHD at 6 months was highest in MA-PB (44%), followed by RIC-PB (36%), MA-BM (36%), and RIC-BM (30%) (P = .002). The incidence of chronic GVHD at 1 year was 40%, 34%, 24%, and 20%, respectively (P < .001). In multivariable analysis, there was no impact of stem cell source or conditioning regimen on grade 2 to 4 acute GVHD; however, older donor age (30 to 49 versus <29 years) was significantly associated with higher rates of grade 2 to 4 acute GVHD (hazard ratio [HR], 1.53; 95% confidence interval [CI], 1.11 to 2.12; P = .01). In contrast, PB compared to BM as a stem cell source was a significant risk factor for the development of chronic GVHD (HR, 1.70; 95% CI, 1.11 to 2.62; P = .01) in the RIC setting. There were no differences in relapse or overall survival between groups. Donor age and graft source are risk factors for acute and chronic GVHD, respectively, after PTCy-based haplo-HCT. Our results indicate that in RIC haplo-HCT, the risk of chronic GVHD is higher with PB stem cells, without any difference in relapse or overall survival
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Heparin-induced Thrombocytopenia: Pathophysiology, Diagnosis, and Review of Pharmacotherapy
Heparin-induced thrombocytopenia is an adverse drug reaction to heparin therapy leading to devastating clinical outcomes including venous thromboembolism, myocardial infarction, stroke, and limb amputation. Heparin cessation alone is not sufficient for the management of heparin-induced thrombocytopenia. Direct thrombin inhibitors, such as argatroban and lepirudin, are considered the mainstay for the management of heparin-induced thrombocytopenia. Case reports support the use of fondaparinux in the management of heparin-induced thrombocytopenia; however, randomized trials are still lacking. This article will review the pathophysiology, clinical presentation, complications, diagnosis, and pharmacotherapy management of heparin-induced thrombocytopenia
Allogeneic bone marrow cocultured with human islets significantly improves islet survival and function in vivo
A significant barrier to islet transplantation is the rapid loss of human islet function in vivo. The present study evaluates whether bone marrow (BM) could be used to support human islet survival and function in vivo.
We cocultured human islets and BM for 3 weeks before transplantation into the left subrenal capsule of diabetic severe combined immunodeficient mice.
The cocultured human islets before transplantation demonstrated improved viability, increased size, and migration capacity in vitro. After 4 months, animals transplanted with precultured BM/islets exhibited euglycemia and detectable human insulin levels (157 μU/mL), whereas no human insulin was detected in the islet-only transplantation group. Furthermore, the removal of the transplants on day 126 resulted in hyperglycemia, indicating that the reduction of blood glucose was dependent on the transplants. Diabetic mice transplanted with BM/islets demonstrated the longest survival period (130 vs. 40 days for those with islet-only transplants). The transplanted BM/islets showed signs of vascularization and migration from the renal capsule into medulla.
Our results suggest that BM precultured with human islets may enhance the survival and function of transplanted islets, thus significantly improving the therapeutic efficacy of islet transplantation for type 1 diabetes