22 research outputs found

    Neogene Uplift and Magmatism of Anatolia: Insights from Drainage Analysis and Basaltic Geochemistry

    Get PDF
    It is generally agreed that mantle dynamics have played a significant role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is much debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence or absence of temperature and/or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This geomorphic database is inverted to calculate the variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced in the east at 20 Ma and propagated westward. Secondly, we have assembled a database of geochemical analyses of basaltic rocks. Two different approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1400°C. There is evidence that potential temperatures are higher in the east, consistent with the pattern of sub-plate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first order role in generating and maintaining regional dynamic topography and basaltic magmatism

    High-K volcanism in the Afyon region, western Turkey: from Si-oversaturated to Si-undersaturated volcanism

    Get PDF
    Volcanic rocks of the Afyon province (eastern part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite– leucitites (11.50 ± 0.03 Ma), spotted rachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode. The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma. The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province

    Damping spectra for estimating inelastic deformations from modal response spectrum analysis

    No full text
    The focus of this study is estimating inelastic deformations of building frames by conducting response spectrum analysis. Damping spectra (R-mu-xi-Tspectra) are derived first for SDOF systems defined with their initial period or initial stiffness, in order to attain equal maximum displacements of the companion inelastic systems. Mean spectral relations and their standard deviations are calculated for 566 horizontal pairs of near-fault ground motions. They are further classified with respect to ductility reduction factorR(mu)as well as the earthquake magnitude and soil type, which are found to have notable influence on the effect of damping in reducing maximum displacement. Optimal damping scaling factors are then calculated for converting the standard 5% damped linear elastic spectra to inelastic spectra. Finally, maximum deformations of MDOF building frames are estimated by using the optimal spectral factors through mode superposition analysis. The results are compared with the results obtained from nonlinear response history analysis under different sets of strong ground motions. Mean inelastic deformations are predicted with reasonable accuracy with the proposed procedure. Hence, damping spectra furnishing optimal damping ratios are suggested as a practical tool for assessing the seismic performance of newly designed, code conforming structures

    The geochronology and origin of mantle sources for late cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadağ neovolcanic area of Turkey. Part 2. The results of geochemical and isotope (Sr-Nd-Pb) studies

    No full text
    A geochemical and isotope-geochemical (Sr-Nd-Pb) study has been carried out for the Karacadag neovolcanic area, which is situated within the frontal part of the Arabian plate. The obtained data and the results of petrological modeling show that the petrogenesis of parental magmas in the Karacadag neovolcanic area involved two compositionally different mantle sources; one consisted of garnet-bearing peridotites of the asthenosphere mantle and the other was spinel-bearing peridotites of the enriched subcontinental lithosphere mantle. During early stages in the evolution of the magmatic system, deep-seated asthenospheric magmas were ascending to the surface while intensively interacting with the melts that had been generated at upper mantle depths. The interaction gradually diminished, so that the later effusive rocks mostly have compositions that are similar to those of the primitive asthenospheric magmas. It is shown that a significant (up to 17-18 wt % of the mantle melt) assimilation of crustal material could take place only during the initial phases of the magmatism. Periodic replenishment of the magma chambers by primitive magmas, which resulted in an observable high degree of homogeneity in the composition of young effusive rocks, was also of importance in the petrogenesis of lavas during the evolution of volcanic activity
    corecore