371 research outputs found

    Sensitivity of Nuclear Transition Frequencies to Temporal Variation of the Fine Structure Constant or the Strong Interaction

    Get PDF
    There exist in nature a few nuclear isomers with very low (eV) excitation energies, and the combination of low energy and narrow width makes them possible candidates for laser-based investigations. The best candidate is the lowest-energy excited state known in nuclear physics, the 7.6(5) eV isomer of 229^{229}Th. A recent study suggests that a measurement of the temporal variation of the excitation energy of this isomer would have 5-6 orders of magnitude enhanced sensitivity to a variation of the fine structure constant (α1/137.036\alpha \cong 1/137.036) or of a strong interaction parameter (mq/ΛQCDm_q/\Lambda_{QCD}). We reexamine the physics involved in these arguments. By invoking the Feynman-Hellmann Theorem we argue that there is no expectation of significantly enhanced sensitivity to a variation in the fine structure constant (beyond that obtained from experimental considerations such as the low energy and narrow width of the isomer). A similar argument applies to the strong interaction, but evaluating the shift due to temporal variations of the underlying parameters of the strong interaction may be beyond current nuclear structure techniques.Comment: 4 Pages, no figure

    High-spin states in boson models with applications to actinide nuclei

    Get PDF
    We use the 1/NN expansion formalism in a systematic study of high-spin states in the sdsd and sdgsdg boson models with emphasis on spin dependence of moment of inertia and E2 transitions. The results are applied to the high-spin states in the actinide nuclei 232^{232}Th, 234238^{234-238}U, where the need for gg bosons is especially acute but until now, no realistic calculation existed. We find that the dd-boson energy plays a crucial role in description of the high-spin data.Comment: 11 pages Latex, 4 figures available upon request (to appear in Phys. Lett. B

    Alpha decay and proton-neutron correlations

    Full text link
    We study the influence of proton-neutron (p-n) correlations on alpha-decay width. It is shown from the analysis of alpha Q values that the p-n correlations increase the penetration of the alpha particle through the Coulomb barrier in the treatment following Gamow's formalism, and enlarges the total alpha-decay width significantly. In particular, the isoscalar p-n interactions play an essential role in enlarging the alpha-decay width. The so-called "alpha-condensate" in Z > 84 isotopes are related to the strong p-n correlations.Comment: 5 pages, 6 figures, accepted for publication in Phys. Rev. C (R.C.

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    High fidelity replication of surface texture and geometric form of a high aspect ratio aerodynamic test component

    Get PDF
    This paper details, assesses and validates a technique for the replication of a titanium wind tunnel test aerofoil in polyurethane resin. Existing resin replication techniques are adapted to overcome the technical difficulties associated with casting a high aspect ratio component. The technique is shown to have high replication fidelity over all important length-scales. The blade chord was accurate to 0.02%, and the maximum blade thickness was accurate to 2.5%. Important spatial and amplitude areal surface texture parameter were accurate to within 2%. Compared to an existing similar system using correlation areal parameters the current technique is shown to have lower fidelity and this difference is discussed. The current technique was developed for the measurement of boundary layer flow‘laminar to turbulent’ transition for gas turbine compressor blade profiles and this application is illustrated

    Characterization of denture acrylic resin surfaces modified by glow discharges

    Get PDF
    Resin samples prepared by compression molding using a poly (methyl methacrylate) (PMMA) denture base material were exposed to radio-frequency (rf) glow discharges to improve the wettability of the material. Fourier transform infrared (FT-IR) reflectance, X-ray photoelectron spectroscopy (XPS), and contact-angle measurements have been employed to characterize the changes introduced by the glow discharge plasma. FT-IR measurements cannot detect any modification. XPS reveals an increase in the O/C atomic ratio. Contact angles of the plasma-treated samples are always lower when compared with untreated ones. The increased O atomic concentration is attributed to formation of -COH groups on the surface during plasma treatment. The O/C atomic ratio decreases upon heating the samples in vacuum to 100 °C for 1-2 min and exposing the samples to liquid CH2Cl2 for 1-2 min. Exposure to distilled water for prolonged periods causes a slight decrease during the initial 1-20 days but levels off to a constant value up to a period of 60 days. Plasma treatment seems to offer a durable increase in the wettability for these materials left in air or distilled water

    Analytical description of the Coherent State Model for near vibrational and well deformed nuclei

    Full text link
    Analytical formulas for the excitation energies as well as for the electric quadrupole reduced transition probabilities in the ground, beta and gamma bands were derived within the coherent state model for the near vibrational and well deformed nuclei. Numerical calculations were performed for 42 nuclei exhibiting various symmetries and therefore with specific properties. Comparison of the calculation results with the corresponding experimental data shows a good agreement. The parameters involved in the proposed model satisfy evident regularities being interpolated by smooth curves. Few of them, which fall out of the curves, are interpreted as signatures for a critical point in a specific phase transition. This is actually supported also by the figures showing the excitation energy dependence on the angular momentum. The formulas provided for energies and B(E2) values are very simple, being written in a compact form, and therefore easy to be handled to explain the new experimental data.Comment: 9 figures, 50 page

    Heat-damage assessment of carbon-fiber-reinforced polymer composites by diffuse reflectance infrared spectroscopy

    Get PDF
    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to assess the effects of heat damage on carbon-fiber-reinforced polymer composites. Moisture-saturated graphite-epoxy laminates with a quasi-isotropic lay-up were heat-damaged above their upper service temperatures. The loss of matrix-dominated mechanical properties due to heat exposure was investigated in the laboratory under environmental testing conditions with mechanical tests, ultrasonic C-scanning, and DRIFT spectroscopy. The reduction of the mechanical strength of the composite materials was accompanied by an increase in the carbonyl band integral and a decrease in the phenyl ratio and hydroxyl and hydrocarbon band integrals, as shown by the DRIFT spectra. DRIFT was confirmed to be more effective than ultrasonic inspection in evaluating the extent of heat damage, and a good correlation was found between the mechanical test results and DRIFT spectra. © 2005 Wiley Periodicals, Inc

    Complex-Radical Copolymerization of Vinylcyclohexyl Ketones with Maleic Anhydride and N-p-tolylmaleimide

    Get PDF
    Some features of the formation and photochemical reactions of cyclohexylketone containing macromolecules including copolymers of vinylcyclohexyl ketone (VCHK) and its derivatives (V-a-Cl-CHK and V- d-C1-CHK) with maleic anhydride (MA) and N-p-tolylmaleimide (TMI) have been revealed. It has been established that keto-enol tautomerism is the only reaction realized in the vinylcyclohexylketone molecules having mobile hydrogen atom at a -position in the cyclohexane ring, enol form of which is formed by charge-transfer complexes with anhydride or imide of maleic acid as acceptor monomers. The kinetic parameters of these reactions, including complex-formation and copolymerization constants, as well as the ratios of chain growth rates for the participation of monomeric charge-transfer complexes and free monomers,В are all determined. It is shown that an alternative copolymerization is realized with the monomer systems containing VCHK and V- d -C1-CHK, which are carried out through a complex-mechanism due to the keto-enol tautomerism; while random copolymer enriched with vinyl ketone units is formed with the system containing oc-substituted VCHK. It is found that characteristics of photochemical reactions ofВ alternating copolymer synthesized depend on the type of substitutation in the vinyl ketone molecule; unlink VCHK-MA(TMI) and V-d-C1-CHK-MA(TMI) copolymers case which easily crosslink upon UVirradiation, and the N-substituted derivatives of these copolymers which decompose under similar condition
    corecore