14 research outputs found

    A ring/disk/outflow system associated with W51 North: a very massive star in the making

    Full text link
    Sensitive and high angular resolution (\sim 0.4\arcsec) SO2_2[222,20_{2,20} \to 221,21_{1,21}] and SiO[5\to4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) towards the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M_\odot) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M_\odot) and collimated (14\sim14^\circ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity of more than 105^5 L_\odot. A molecular hybrid LTE model of a Keplerian and infalling ring with an inner cavity and a central stellar mass of more than 60 M_\odot agrees well with the SO2_2[222,20_{2,20} \to 221,21_{1,21}] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate- mass stars, might be not necessary for forming very massive stars.Comment: Accepted by The Astrophysical Journa

    Efficacy of a brief multifactorial adherence-based intervention on reducing the blood pressure of patients with poor adherence: protocol for a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lowering of blood pressure by antihypertensive drugs reduces the risks of cardiovascular events, stroke, and total mortality. However, poor adherence to antihypertensive medications reduces their effectiveness and increases the risk of adverse events. In terms of relative risk reduction, an improvement in medication adherence could be as effective as the development of a new drug.</p> <p>Methods/Design</p> <p>The proposed randomized controlled trial will include patients with a low adherence to medication and uncontrolled blood pressure. The intervention group will receive a multifactorial intervention during the first, third, and ninth months, to improve adherence. This intervention will include motivational interviews, pill reminders, family support, blood pressure self-recording, and simplification of the dosing regimen.</p> <p>Measurement</p> <p>The primary outcome is systolic blood pressure. The secondary outcomes are diastolic blood pressure, proportion of patients with adequately controlled blood pressure, and total cost.</p> <p>Discussion</p> <p>The trial will evaluate the impact of a multifactorial adherence intervention in routine clinical practice. Ethical approval was given by the Ethical Committee on Human Research of Balearic islands, Spain (approval number IB 969/08 PI).</p> <p>Trial registration</p> <p>Current controlled trials ISRCTN21229328</p

    Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration

    Get PDF
    Introductio: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. Methods and analysis: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. Ethics and dissemination: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations

    Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration

    No full text
    Introductio: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. Methods and analysis: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. Ethics and dissemination: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations
    corecore