428 research outputs found
Local rewiring rules for evolving complex networks
ERC is grateful for the nancial support of the EPSRC
An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach
The Landauer approach provides a conceptually simple way to calculate the
intrinsic thermoelectric (TE) parameters of materials from the ballistic to the
diffusive transport regime. This method relies on the calculation of the number
of propagating modes and the scattering rate for each mode. The modes are
calculated from the energy dispersion (E(k)) of the materials which require
heavy computation and often supply energy relation on sparse momentum (k)
grids. Here an efficient method to calculate the distribution of modes (DOM)
from a given E(k) relationship is presented. The main features of this
algorithm are, (i) its ability to work on sparse dispersion data, and (ii)
creation of an energy grid for the DOM that is almost independent of the
dispersion data therefore allowing for efficient and fast calculation of TE
parameters. The inclusion of scattering effects is also straight forward. The
effect of k-grid sparsity on the compute time for DOM and on the sensitivity of
the calculated TE results are provided. The algorithm calculates the TE
parameters within 5% accuracy when the K-grid sparsity is increased up to 60%
for all the dimensions (3D, 2D and 1D). The time taken for the DOM calculation
is strongly influenced by the transverse K density (K perpendicular to
transport direction) but is almost independent of the transport K density
(along the transport direction). The DOM and TE results from the algorithm are
bench-marked with, (i) analytical calculations for parabolic bands, and (ii)
realistic electronic and phonon results for .Comment: 16 Figures, 3 Tables, submitted to Journal of Computational
electronic
Encorafenib plus binimetinib in patients with BRAF(V)(600)-mutant non-small cell lung cancer: Phase II PHAROS study design
BRAF(V600) oncogenic driver mutations occur in 1-2% of non-small cell lung cancers (NSCLCs) and have been shown to be a clinically relevant target. Preclinical/clinical evidence support the efficacy and safety of BRAF and MEK inhibitor combinations in patients with NSCLC with these mutations. We describe the design of PHAROS, an ongoing, open-label, single-arm, Phase II trial evaluating the BRAF inhibitor encorafenib plus the MEK inhibitor binimetinib in patients with metastatic BRAF(V600) -mutant NSCLC, as first- or second-line treatment. The primary endpoint is objective response rate, based on independent radiologic review (per RECIST v1.1); secondary objectives evaluated additional efficacy endpoints and safety. Results from PHAROS will describe the antitumor activity/safety of encorafenib plus binimetinib in patients with metastatic BRAF(V600)-mutant NSCLC.Lay abstract: Some people with non-small cell lung cancer (NSCLC) have changes in a gene called BRAF (known as 'gene mutations'). One common BRAF mutation is called 'V600'. Combinations of medicines that block proteins encoded by mutant BRAF and another gene called MEK can shrink tumors and slow their progression. We describe the design of PHAROS, a clinical trial investigating encorafenib (mutant BRAF inhibitor) combined with binimetinib (MEK inhibitor) in people with BRAF(V600)-mutant NSCLC that had spread to other parts of the body ('metastatic disease'). People are monitored for side effects and to see if their tumor shrunk. PHAROS includes people treated with encorafenib plus binimetinib as their first treatment for metastatic disease, and people whose cancer progressed after previous anticancer therapy.Pathogenesis and treatment of chronic pulmonary disease
Search for Charmless Two-body Baryonic Decays of B Mesons
We report the results of a search for the rare baryonic decays , , and . The analysis
is based on a data set of events collected by the
Belle detector at the KEKB collider. No statistically significant
signals are found, and we set branching fraction upper limits , , and at the 90% confidence level.Comment: 6 pages, 4 figures and 1 table. Submitted to Phys. Rev. D Rapid
Communication
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
Search for the associated production of a b quark and a neutral supersymmetric Higgs boson which decays to tau pairs
We report results from a search for production of a neutral Higgs boson in
association with a quark. We search for Higgs decays to pairs with
one subsequently decaying to a muon and the other to hadrons. The data
correspond to 2.7fb of \ppbar collisions recorded by the D0 detector
at TeV. The data are found to be consistent with background
predictions. The result allows us to exclude a significant region of parameter
space of the minimal supersymmetric model.Comment: Submitted to Phys. Rev. Letter
- …