6 research outputs found

    Avoiding the hook : influential factors of phishing awareness training on click-rates and a data-driven approach to predict email difficulty perception

    Get PDF
    Phishing attacks are still seen as a significant threat to cyber security, and large parts of the industry rely on anti-phishing simulations to minimize the risk imposed by such attacks. This study conducted a large-scale anti-phishing training with more than 31000 participants and 144 different simulated phishing attacks to develop a data-driven model to classify how users would perceive a phishing simulation. Furthermore, we analyze the results of our large-scale anti-phishing training and give novel insights into users’ click behavior. Analyzing our anti-phishing training data, we find out that 66% of users do not fall victim to credential-based phishing attacks even after being exposed to twelve weeks of phishing simulations. To further enhance the phishing awareness-training effectiveness, we developed a novel manifold learning-powered machine learning model that can predict how many people would fall for a phishing simulation using the several structural and state-of-the-art NLP features extracted from the emails. In this way, we present a systematic approach for the training implementers to estimate the average “convincing power” of the emails prior to rolling out. Moreover, we revealed the top-most vital factors in the classification. In addition, our model presents significant benefits over traditional rule-based approaches in classifying the difficulty of phishing simulations. Our results clearly show that anti-phishing training should focus on the training of individual users rather than on large user groups. Additionally, we present a promising generic machine learning model for predicting phishing susceptibility

    PrepNet : a convolutional auto-encoder to homogenize CT scans for cross-dataset medical image analysis

    Get PDF
    With the spread of COVID-19 over the world, the need arose for fast and precise automatic triage mechanisms to decelerate the spread of the disease by reducing human efforts e.g. for image-based diagnosis. Although the literature has shown promising efforts in this direction, reported results do not consider the variability of CT scans acquired under varying circumstances, thus rendering resulting models unfit for use on data acquired using e.g. different scanner technologies. While COVID-19 diagnosis can now be done efficiently using PCR tests, this use case exemplifies the need for a methodology to overcome data variability issues in order to make medical image analysis models more widely applicable. In this paper, we explicitly address the variability issue using the example of COVID-19 diagnosis and propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans through leveraging the idea of deep autoencoders. The proposed prepossessing architecture (PrepNet) (i) is jointly trained on multiple CT scan datasets and (ii) is capable of extracting improved discriminative features for improved diagnosis. Experimental results on three public datasets (SARS-COVID-2, UCSD COVID-CT, MosMed) show that our model improves cross-dataset generalization by up to 11:84 percentage points despite a minor drop in within dataset performance

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Analyzing The Views Of Teachers And Prospective Teachers On Information And Communication Technology Via Descriptive Data Mining

    No full text
    This study aims to determine the overt and covert patterns that teachers' and prospective teachers' views on the use of information and communication technology (ICT) instruments contain by using the method of data mining. The study group was composed of 192 prospective teachers attending a state university in Ankara, Turkey and 101 teachers working in Ankara-all of whom took part in the study on the basis of volunteering. Teachers' and prospective teachers' views were obtained by means of a scale. Clustering and association rules-algorithms for data mining-were applied to the data collected, and thus the frequently held patterns for teachers' and prospective teachers' views on ICT instruments were found. Consequently, cluster analysis suggested that prospective teachers considered themselves more competent than teachers in terms of computer skills but that teachers were the group having the most positive views. In addition to this, the results of association rules analysis indicated that the prospective teachers and teachers held the opinion that ICT instruments added variety to the teaching-learning process and ensured students' focusing their attention on lessons, also stated that using ICT instruments would increase students' participation in classes.Wo
    corecore