174 research outputs found

    The Global, Regional, and National Burden of Benign Prostatic Hyperplasia in 204 Countries and Territories From 2000 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Benign prostatic hyperplasia is a common urological disease affecting older men worldwide, but comprehensive data about the global, regional, and national burden of benign prostatic hyperplasia and its trends over time are scarce. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated global trends in, and prevalence of, benign prostatic hyperplasia and disability-adjusted life-years (DALYs) due to benign prostatic hyperplasia, in 21 regions and 204 countries and territories from 2000 to 2019. Methods This study was conducted with GBD 2019 analytical and modelling strategies. Primary prevalence data came from claims from three countries and from hospital inpatient encounters from 45 locations. A Bayesian metaregression modelling tool, DisMod-MR version 2.1, was used to estimate the age-specific, location-specific, and yearspecific prevalence of benign prostatic hyperplasia. Age-standardised prevalence was calculated by the direct method using the GBD reference population. Years lived with disability (YLDs) due to benign prostatic hyperplasia were estimated by multiplying the disability weight by the symptomatic proportion of the prevalence of benign prostatic hyperplasia. Because we did not estimate years of life lost associated with benign prostatic hyperplasia, disabilityadjusted life-years (DALYs) equalled YLDs. The final estimates were compared across Socio-demographic Index (SDI) quintiles. The 95% uncertainty intervals (UIs) were estimated as the 25th and 975th of 1000 ordered draws from a bootstrap distribution. Findings Globally, there were 94·0 million (95% UI 73·2 to 118) prevalent cases of benign prostatic hyperplasia in 2019, compared with 51·1 million (43·1 to 69·3) cases in 2000. The age-standardised prevalence of benign prostatic hyperplasia was 2480 (1940 to 3090) per 100 000 people. Although the global number of prevalent cases increased by 70·5% (68·6 to 72·7) between 2000 and 2019, the global age-standardised prevalence remained stable (–0·770% [–1·56 to 0·0912]). The age-standardised prevalence in 2019 ranged from 6480 (5130 to 8080) per 100000 in eastern Europe to 987 (732 to 1320) per 100 000 in north Africa and the Middle East. All five SDI quintiles observed an increase in the absolute DALY burden between 2000 and 2019. The most rapid increases in the absolute DALY burden were seen in the middle SDI quintile (94·7% [91·8 to 97·6]), the low-middle SDI quintile (77·3% [74·1 to 81·2]), and the low SDI quintile (77·7% [72·9 to 83·2]). Between 2000 and 2019, age-standardised DALY rates changed less, but the three lower SDI quintiles (low, low-middle, and middle) saw small increases, and the two higher SDI quintiles (high and high-middle SDI) saw small decreases. Interpretation The absolute burden of benign prostatic hyperplasia is rising at an alarming rate in most of the world, particularly in low-income and middle-income countries that are currently undergoing rapid demographic and epidemiological changes. As more people are living longer worldwide, the absolute burden of benign prostatic hyperplasia is expected to continue to rise in the coming years, highlighting the importance of monitoring and planning for future health system strain

    The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Oesophageal cancer is a common and often fatal cancer that has two main histological subtypes: oesophageal squamous cell carcinoma and oesophageal adenocarcinoma. Updated statistics on the incidence and mortality of oesophageal cancer, and on the disability-adjusted life-years (DALYs) caused by the disease, can assist policy makers in allocating resources for prevention, treatment, and care of oesophageal cancer. We report the latest estimates of these statistics for 195 countries and territories between 1990 and 2017, by age, sex, and Socio-demographic Index (SDI), using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD). Methods We used data from vital registration systems, vital registration-samples, verbal autopsy records, and cancer registries, combined with relevant modelling, to estimate the mortality, incidence, and burden of oesophageal cancer from 1990 to 2017. Mortality-to-incidence ratios (MIRs) were estimated and fed into a Cause of Death Ensemble model (CODEm) including risk factors. MIRs were used for mortality and non-fatal modelling. Estimates of DALYs attributable to the main risk factors of oesophageal cancer available in GBD were also calculated. The proportion of oesophageal squamous cell carcinoma to all oesophageal cancers was extracted by use of publicly available data, and its variation was examined against SDI, the Healthcare Access and Quality (HAQ) Index, and available risk factors in GBD that are specific for oesophageal squamous cell carcinoma (eg, unimproved water source and indoor air pollution) and for oesophageal adenocarcinoma (gastro-oesophageal reflux disease). Findings There were 473 000 (95% uncertainty interval [95% UI] 459 000–485 000) new cases of oesophageal cancer and 436 000 (425 000–448 000) deaths due to oesophageal cancer in 2017. Age-standardised incidence was 5·9 (5·7–6·1) per 100 000 population and age-standardised mortality was 5·5 (5·3–5·6) per 100 000. Oesophageal cancer caused 9·78 million (9·53–10·03) DALYs, with an age-standardised rate of 120 (117–123) per 100 000 population. Between 1990 and 2017, age-standardised incidence decreased by 22·0% (18·6–25·2), mortality decreased by 29·0% (25·8–32·0), and DALYs decreased by 33·4% (30·4–36·1) globally. However, as a result of population growth and ageing, the total number of new cases increased by 52·3% (45·9–58·9), from 310 000 (300 000–322 000) to 473 000 (459 000–485 000); the number of deaths increased by 40·0% (34·1–46·3), from 311 000 (301 000–323 000) to 436 000 (425 000–448 000); and total DALYs increased by 27·4% (22·1–33·1), from 7·68 million (7·42–7·97) to 9·78 million (9·53–10·03). At the national level, China had the highest number of incident cases (235 000 [223 000–246 000]), deaths (213 000 [203 000–223 000]), and DALYs (4·46 million [4·25–4·69]) in 2017. The highest national-level age-standardised incidence rates in 2017 were observed in Malawi (23·0 [19·4–26·5] per 100 000 population) and Mongolia (18·5 [16·4–20·8] per 100 000). In 2017, age-standardised incidence was 2·7 times higher, mortality 2·9 times higher, and DALYs 3·0 times higher in males than in females. In 2017, a substantial proportion of oesophageal cancer DALYs were attributable to known risk factors: tobacco smoking (39·0% [35·5–42·2]), alcohol consumption (33·8% [27·3–39·9]), high BMI (19·5% [6·3–36·0]), a diet low in fruits (19·1% [4·2–34·6]), and use of chewing tobacco (7·5% [5·2–9·6]). Countries with a low SDI and HAQ Index and high levels of indoor air pollution had a higher proportion of oesophageal squamous cell carcinoma to all oesophageal cancer cases than did countries with a high SDI and HAQ Index and with low levels of indoor air pollution. Interpretation Despite reductions in age-standardised incidence and mortality rates, oesophageal cancer remains a major cause of cancer mortality and burden across the world. Oesophageal cancer is a highly fatal disease, requiring increased primary prevention efforts and, possibly, screening in some high-risk areas. Substantial variation exists in age-standardised incidence rates across regions and countries, for reasons that are unclear.publishedVersio

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1–7·8), from 65·6 years (65·3–65·8) in 1990 to 73·0 years (72·7–73·3) in 2017. The increase in years of life varied from 5·1 years (5·0–5·3) in high SDI countries to 12·0 years (11·3–12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1–33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8–15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9–6·7), from 57·0 years (54·6–59·1) in 1990 to 63·3 years (60·5–65·7) in 2017. The increase varied from 3·8 years (3·4–4·1) in high SDI countries to 10·5 years (9·8–11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4–1·7) in Saint Vincent and the Grenadines (62·4 years [59·9–64·7] in 1990 to 63·5 years [60·9–65·8] in 2017) to 23·7 years (21·9–25·6) in Eritrea (30·7 years [28·9–32·2] in 1990 to 54·4 years [51·5–57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6–2·3) in Algeria to 11·9 years (10·9–12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4–78·7]) and males (72·6 years [69·8–75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7–50·2] for females and 42·8 years [40·1–45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8–43·5) for communicable diseases and by 49·8% (47·9–51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8–43·0), although age-standardised DALY rates decreased by 18·1% (16·0–20·2). Interpretation With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low SDI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health. Funding Bill & Melinda Gates Foundation

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017:a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950.Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950

    Global, regional, and national burden of meningitis, 1990-2016:a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Acute meningitis has a high case-fatality rate and survivors can have severe lifelong disability. We aimed to provide a comprehensive assessment of the levels and trends of global meningitis burden that could help to guide introduction, continuation, and ongoing development of vaccines and treatment programmes. Methods The Global Burden of Diseases, Injuries, and Risk Factors (GBD) 2016 study estimated meningitis burden due to one of four types of cause: pneumococcal, meningococcal, Haemophilus influenzae type b, and a residual category of other causes. Cause-specific mortality estimates were generated via cause of death ensemble modelling of vital registration and verbal autopsy data that were subject to standardised data processing algorithms. Deaths were multiplied by the GBD standard life expectancy at age of death to estimate years of life lost, the mortality component of disability-adjusted life-years (DALYs). A systematic analysis of relevant publications and hospital and daims data was used to estimate meningitis incidence via a Bayesian meta-regression tool. Meningitis deaths and cases were split between causes with meta-regressions of aetiological proportions of mortality and incidence, respectively. Probabilities of long-term impairment by cause of meningitis were applied to survivors and used to estimate years of life lived with disability (YLDs). We assessed the relationship between burden metrics and Socio-demographic Index (SDI), a composite measure of development based on fertility, income, and education. Findings Global meningitis deaths decreased by 21.0% from 1990 to 2016, from 403 012 (95% uncertainty interval [UI] 319426-458 514) to 318 400 (265 218-408 705). Incident cases globally increased from 2.50 million (95% UI 2.19-2.91) in 1990 to 2.82 million (2.46-3.31) in 2016. Meningitis mortality and incidence were dosely related to SDI. The highest mortality rates and incidence rates were found in the peri-Sahelian countries that comprise the African meningitis belt, with six of the ten countries with the largest number of cases and deaths being located within this region. Haemophilus influenzae type b was the most common cause of incident meningitis in 1990, at 780 070 cases (95% UI 613 585-978 219) globally, but decreased the most (-494%) to become the least common cause in 2016, with 397 297 cases (291076-533 662). Meningococcus was the leading cause of meningitis mortality in 1990 (192833 deaths [95% UI 153 358-221 503] globally), whereas other meningitis was the leading cause for both deaths (136 423 [112 682-178 022]) and incident cases (1.25 million [1.06-1.49]) in 2016. Pneumococcus caused the largest number of YLDs (634458 [444 787-839 749]) in 2016, owing to its more severe long-term effects on survivors. Globally in 2016, 1.48 million (1.04-1.96) YLDs were due to meningitis compared with 21.87 million (18.20-28.28) DALYs, indicating that the contribution of mortality to meningitis burden is far greater than the contribution of disabling outcomes. Interpretation Meningitis burden remains high and progress lags substantially behind that of other vaccine-preventable diseases. Particular attention should be given to developing vaccines with broader coverage against the causes of meningitis, making these vaccines affordable in the most affected countries, improving vaccine uptake, improving access to low-cost diagnostics and therapeutics, and improving support for disabled survivors. Substantial uncertainty remains around pathogenic causes and risk factors for meningitis. Ongoing, active cause-specific surveillance of meningitis is crucial to continue and to improve monitoring of meningitis burdens and trends throughout the world. Copyright (C) The Author(s). Published by Elsevier Ltd

    Future and potential spending on health 2015-40 : development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential.Peer reviewe

    Maternal mortality and morbidity burden in the Eastern Mediterranean region : findings from the Global Burden of Disease 2015 study

    Get PDF
    Assessing the burden of maternal mortality is important for tracking progress and identifying public health gaps. This paper provides an overview of the burden of maternal mortality in the Eastern Mediterranean Region (EMR) by underlying cause and age from 1990 to 2015. We used the results of the Global Burden of Disease 2015 study to explore maternal mortality in the EMR countries. The maternal mortality ratio in the EMR decreased 16.3% from 283 (241-328) maternal deaths per 100,000 live births in 1990 to 237 (188-293) in 2015. Maternal mortality ratio was strongly correlated with socio-demographic status, where the lowest-income countries contributed the most to the burden of maternal mortality in the region. Progress in reducing maternal mortality in the EMR has accelerated in the past 15 years, but the burden remains high. Coordinated and rigorous efforts are needed to make sure that adequate and timely services and interventions are available for women at each stage of reproductive life
    corecore