969 research outputs found

    Trilobites and intercontinental tie points in the Upper Cambrian of Scandinavia

    Get PDF
    The Upper Cambrian faunas of Scandinavia are generally dominated by olenid trilobites, which provide a firm basis for the biostratigraphic classification. The olenids tend, however, to be provincial and facies controlled. By contrast, many agnostoid genera and species have a nearly worldwide distribution and are excellent biostratigraphic indices in Middle and Upper Cambrian strata. Three distinctive and geographically widely distributed agnostoid species are known from the lower part of the Upper Cambrian in Scandinavia: Linguagnostus reconditus POLETAEVA and ROMANENKO, 1970, Aspidagnostus lunulosus (KRYSKOV in Borovikov and Kryskov, 1963), and Glyptagnostus reticulatus (ANGELIN, 1851). They are the most valuable species available for correlations with Upper Cambrian deposits outside Baltica. L. reconditus is seemingly confined to the Agnostus pisiformis Zone and provides strong evidence for correlation of that zone with the recently defined L. reconditus Zone of Peng and Robison. G. reticulatus appears in the Olenus gibbosus Subzone and ranges up into the O. wahlenbergi Subzone, suggesting that the lower part of the Olenus/Agnostus (Homagnostus) obesus Zone correlates with the G. reticulatus Zone in, e.g., Australia, China, and Kazakhstan. The presence of A. lunulosus in the O. gibbosus Subzone provides additional evidence for this correlation. Higher in the sequence agnostoids become rare, and the species recorded from the medial and upper Upper Cambrian of Baltica permit only broad correlations with other continents

    Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): Conservation and innovation across the fish-tetrapod transition

    Get PDF
    Background: The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus).Results: In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature.Conclusions: Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It is hypothesized that the iliac process or ridge present in most tetrapodomorph fish is the precursor to the tetrapod ilium and that its evolution mimicked its development in modern salamanders

    Uniform Diagonalization Theorem for Complexity Classes of Promise Problems including Randomized and Quantum Classes

    Full text link
    Diagonalization in the spirit of Cantor's diagonal arguments is a widely used tool in theoretical computer sciences to obtain structural results about computational problems and complexity classes by indirect proofs. The Uniform Diagonalization Theorem allows the construction of problems outside complexity classes while still being reducible to a specific decision problem. This paper provides a generalization of the Uniform Diagonalization Theorem by extending it to promise problems and the complexity classes they form, e.g. randomized and quantum complexity classes. The theorem requires from the underlying computing model not only the decidability of its acceptance and rejection behaviour but also of its promise-contradicting indifferent behaviour - a property that we will introduce as "total decidability" of promise problems. Implications of the Uniform Diagonalization Theorem are mainly of two kinds: 1. Existence of intermediate problems (e.g. between BQP and QMA) - also known as Ladner's Theorem - and 2. Undecidability if a problem of a complexity class is contained in a subclass (e.g. membership of a QMA-problem in BQP). Like the original Uniform Diagonalization Theorem the extension applies besides BQP and QMA to a large variety of complexity class pairs, including combinations from deterministic, randomized and quantum classes.Comment: 15 page

    A mathematical model for mechanotransduction at the early steps of suture formation

    Get PDF
    Growth and patterning of craniofacial sutures are subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability leading to the emergence of interdigitations. We confirm the appearance of this instability both analytically and numerically. To support our model, we use histology and synchrotron x-ray microtomography and reveal the fine structure of fibres within the sutural mesenchyme and their insertion into the bone. Furthermore, using a mouse model with impaired mechanotransduction, we show that the architecture of sutures is disturbed when forces are not interpreted properly. Finally, by studying the structure of sutures in the mouse, the rat, an actinopterygian (\emph{Polypterus bichir}) and a placoderm (\emph{Compagopiscis croucheri}), we show that bone deposition patterns during dermal bone growth are conserved within jawed vertebrates. In total, these results support the role of mechanical constraints in the growth and patterning of craniofacial sutures, a process that was probably effective at the emergence of gnathostomes, and provide new directions for the understanding of normal and pathological suture fusion

    Tides: A key environmental driver of osteichthyan evolution and the fish-tetrapod transition?

    Get PDF
    Tides are a major component of the interaction between the marine and terrestrial environments, and thus play an important part in shaping the environmental context for the evolution of shallow marine and coastal organisms. Here, we use a dedicated tidal model and palaeogeographic reconstructions from the Late Silurian to early Late Devonian (420 Ma, 400 Ma and 380 Ma, Ma = millions of years ago) to explore the potential significance of tides for the evolution of osteichthyans (bony fish) and tetrapods (land vertebrates). The earliest members of the osteichthyan crown-group date to the Late Silurian, approximately 425 Ma, while the earliest evidence for tetrapods is provided by trackways from the Middle Devonian, dated to approximately 393 Ma, and the oldest tetrapod body fossils are Late Devonian, approximately 373 Ma. Large tidal ranges could have fostered both the evolution of air-breathing organs in osteichthyans to facilitate breathing in oxygen-depleted tidal pools, and the development of weight-bearing tetrapod limbs to aid navigation within the intertidal zones. We find that tidal ranges over 4 m were present around areas of evolutionary significance for the origin of osteichthyans and the fish-tetrapod transition, highlighting the possible importance of tidal dynamics as a driver for these evolutionary processes

    Morphology of the earliest reconstructable tetrapod Parmastega aelidae.

    Get PDF
    The known diversity of tetrapods of the Devonian period has increased markedly in recent decades, but their fossil record consists mostly of tantalizing fragments1-15. The framework for interpreting the morphology and palaeobiology of Devonian tetrapods is dominated by the near complete fossils of Ichthyostega and Acanthostega; the less complete, but partly reconstructable, Ventastega and Tulerpeton have supporting roles2,4,16-34. All four of these genera date to the late Famennian age (about 365-359 million years ago)-they are 10 million years younger than the earliest known tetrapod fragments5,10, and nearly 30 million years younger than the oldest known tetrapod footprints35. Here we describe Parmastega aelidae gen. et sp. nov., a tetrapod from Russia dated to the earliest Famennian age (about 372 million years ago), represented by three-dimensional material that enables the reconstruction of the skull and shoulder girdle. The raised orbits, lateral line canals and weakly ossified postcranial skeleton of P. aelidae suggest a largely aquatic, surface-cruising animal. In Bayesian and parsimony-based phylogenetic analyses, the majority of trees place Parmastega as a sister group to all other tetrapods

    Electrodeposited cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis

    Get PDF
    Cu2O is one of the most studied semiconductors for photocathodes in photoelectrochemical water splitting (PEC-WS). Its low stability is counterbalanced by good activity, provided that a suitable underlayer/support is used. While Cu2O is mostly studied on Au underlayers, this paper proposes Cu(0) as a low-cost, easy to prepare and highly efficient alternative. Cu and Cu2O can be electrodeposited from the same bath, thus allowing in principle to tune the final material\u2019s physico-chemical properties with high precision with a scalable method. Electrodes and photoelectrodes are studied by means of electrochemical methods (cyclic voltammetry, Pb underpotential deposition) and by ex-situ X-ray absorption spectroscopy (XAS). While the potential applied for the deposition of Cu has no influence on the bulk structure and on the photocurrent displayed by the semiconductor, it plays a role on the dark currents, making this strategy promising for improving the material\u2019s stability. Au/Cu2O and Cu/Cu2O show similar performances, the latter having clear advantages in view of future use in practical applications. The influence of Cu underlayer thickness was also evaluated in terms of obtained photocurrent
    corecore