43 research outputs found

    Ecosystem photosynthesis in land-surface models: a first-principles approach

    Get PDF
    Vegetation regulates land-atmosphere water and energy exchanges and is an essential component of land-surface models (LSMs). However, LSMs have been handicapped by assumptions that equate acclimated photosynthetic responses to environment with fast responses observable in the laboratory. These time scales can be distinguished by including specific representations of acclimation, but at the cost of further increasing parameter requirements. Here we develop an alternative approach based on optimality principles that predict the acclimation of carboxylation and electron-transport capacities, and a variable controlling the response of leaf-level carbon dioxide drawdown to vapour pressure deficit (VPD), to variations in growth conditions on a weekly to monthly time scale. In the “P model”, an optimality-based light-use efficiency model for gross primary production (GPP) on this time scale, these acclimated responses are implicit. Here they are made explicit, allowing fast and slow response time-scales to be separated and GPP to be simulated at sub-daily timesteps. The resulting model mimics diurnal cycles of GPP recorded by eddy-covariance flux towers in a temperate grassland and boreal, temperate and tropical forests, with no parameter changes between biomes. Best performance is achieved when biochemical capacities are adjusted to match recent midday conditions. This model suggests a simple and parameter-sparse method to include both instantaneous and acclimated responses within an LSM framework, with many potential applications in weather, climate and carbon - cycle modelling

    Shipborne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI

    Get PDF
    Measurements of atmospheric column-averaged dry-air mole fractions of carbon dioxide (XCO2), methane (XCH4), and carbon monoxide (XCO) have been collected across the Pacific Ocean during the Measuring Ocean REferences 2 (MORE-2) campaign in June 2019.We deployed a shipborne variant of the EM27/SUN Fourier transform spectrometer (FTS) on board the German R/V Sonne which, during MORE-2, crossed the Pacific Ocean from Vancouver, Canada, to Singapore. Equipped with a specially manufactured fast solar tracker, the FTS operated in direct-sun viewing geometry during the ship cruise reliably delivering solar absorption spectra in the shortwave infrared spectral range (4000 to 11000 cm-1). After filtering and bias correcting the dataset, we report on XCO2, XCH4, and XCO measurements for 22 d along a trajectory that largely aligns with 30° N of latitude between 140°W and 120° E of longitude. The dataset has been scaled to the Total Carbon Column Observing Network (TCCON) station in Karlsruhe, Germany, before and after the MORE-2 campaign through side-by-side measurements. The 1σ repeatability of hourly means of XCO2, XCH4, and XCO is found to be 0.24 ppm, 1.1 ppb, and 0.75 ppb, respectively. The Copernicus Atmosphere Monitoring Service (CAMS) models gridded concentration fields of the atmospheric composition using assimilated satellite observations, which show excellent agreement of 0:52-0:31 ppm for XCO2, 0:9±4:1 ppb for XCH4, and 3:2-3:4 ppb for XCO (mean difference ± SD, standard deviation, of differences for entire record) with our observations. Likewise, we find excellent agreement to within 2:2±6:6 ppb with the XCO observations of the TROPOspheric MOnitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite (S5P). The shipborne measurements are accessible at https://doi.org/10.1594/PANGAEA.917240 (Knapp et al., 2020). © Author(s) 2021

    Interactions Between the Amazonian Rainforest and Cumuli Clouds: A Large‐Eddy Simulation, High‐Resolution ECMWF, and Observational Intercomparison Study

    Get PDF
    The explicit coupling at meter and second scales of vegetation's responses to the atmospheric‐boundary layer dynamics drives a dynamic heterogeneity that influences canopy‐top fluxes and cloud formation. Focusing on a representative day during the Amazonian dry season, we investigate the diurnal cycle of energy, moisture and carbon dioxide at the canopy top, and the transition from clear to cloudy conditions. To this end, we compare results from a large‐eddy simulation technique, a high‐resolution global weather model, and a complete observational data set collected during the GoAmazon14/15 campaign. The overall model‐observation comparisons of radiation and canopy‐top fluxes, turbulence, and cloud dynamics are very satisfactory, with all the modeled variables lying within the standard deviation of the monthly aggregated observations. Our analysis indicates that the timing of the change in the daylight carbon exchange, from a sink to a source, remains uncertain and is probably related to the stomata closure caused by the increase in vapor pressure deficit during the afternoon. We demonstrate quantitatively that heat and moisture transport from the subcloud layer into the cloud layer are misrepresented by the global model, yielding low values of specific humidity and thermal instability above the cloud base. Finally, the numerical simulations and observational data are adequate settings for benchmarking more comprehensive studies of plant responses, microphysics, and radiation

    Forecasting global atmospheric CO_2

    Get PDF
    A new global atmospheric carbon dioxide (CO_2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO_2 forecasting system is that the land surface, including vegetation CO_2 fluxes, is modelled online within the IFS. Other CO_2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO_2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO_2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO_2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO_2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO_2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO_2 fluxes also lead to accumulating errors in the CO_2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO_2 fluxes compared to total optimized fluxes and the atmospheric CO_2 compared to observations. The largest biases in the atmospheric CO_2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO_2 analyses based on the assimilation of CO_2 products retrieved from satellite measurements and CO_2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO_2 forecast will be reduced. Improvements in the CO_2 forecast are also expected with the continuous developments in the operational IFS

    The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer

    Get PDF
    The turbulent structure and growth of the remote Saharan atmospheric boundary layer (ABL) is described with in situ radiosonde and aircraft measurements and a large-eddy simulation model. A month of radiosonde data from June 2011 provides a mean profile of the midday Saharan ABL, which is characterized by a well-mixed convective boundary layer, capped by a small temperature inversion (<1K) and a deep, near-neutral residual layer. The boundary layer depth varies by up to 100% over horizontal distances of a few kilometers due to turbulent processes alone. The distinctive vertical structure also leads to unique boundary layer processes, such as detrainment of the warmest plumes across the weak temperature inversion, which slows down the warming and growth of the convective boundary layer. As the boundary layer grows, overshooting plumes can also entrain freetropospheric air into the residual layer, forming a second entrainment zone that acts to maintain the inversion above the convective boundary layer, thus slowing down boundary layer growth further.Asingle-column model is unable to accurately reproduce the evolution of the Saharan boundary layer, highlighting the difficulty of representing such processes in large-scale models. These boundary layer processes are special to the Sahara, and possibly hot, dry, desert environments in general, and have implications for the large-scale structure of the Saharan heat low. The growth of the boundary layer influences the vertical redistribution of moisture and dust, and the spatial coverage and duration of clouds, with large-scale dynamical and radiative implications

    The possible role of local air pollution in climate change in West Africa

    Get PDF
    The climate of West Africa is characterized by a sensitive monsoon system that is associated with marked natural precipitation variability. This region has been and is projected to be subject to substantial global and regional-scale changes including greenhouse-gas-induced warming and sea-level rise, land-use and land-cover change, and substantial biomass burning. We argue that more attention should be paid to rapidly increasing air pollution over the explosively growing cities of West Africa, as experiences from other regions suggest that this can alter regional climate through the influences of aerosols on clouds and radiation, and will also affect human health and food security. We need better observations and models to quantify the magnitude and characteristics of these impacts

    Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020

    Get PDF
    The Copernicus Atmosphere Monitoring Service (CAMS) has recently produced a greenhouse gas reanalysis (version egg4) that covers almost 2 decades from 2003 to 2020 and which will be extended in the future. This reanalysis dataset includes carbon dioxide (CO2) and methane (CH4). The reanalysis procedure combines model data with satellite data into a globally complete and consistent dataset using the European Centre for Medium-Range Weather Forecasts' Integrated Forecasting System (IFS). This dataset has been carefully evaluated against independent observations to ensure validity and to point out deficiencies to the user. The greenhouse gas reanalysis can be used to examine the impact of atmospheric greenhouse gas concentrations on climate change (such as global and regional climate radiative forcing), assess intercontinental transport, and serve as boundary conditions for regional simulations, among other applications and scientific uses. The caveats associated with changes in assimilated observations and fixed underlying emissions are highlighted, as is their impact on the estimation of trends and annual growth rates of these long-lived greenhouse gases.</p

    Development of a Mesoscale Inversion System for Estimating Continental‐Scale CO 2

    No full text
    Abstract Computational requirements often impose limitations on the spatial and temporal resolutions of atmospheric CO2 inversions, increasing aggregation and representation errors. This study enables higher spatial and temporal resolution inversions with spatial and temporal error structures similar to those used in other published inversions by representing the prior flux error covariances as a Kronecker product of spatial and temporal covariances and by using spectral methods for the spatial correlations. Compared to existing inversion systems that are forced to degrade the resolution of the problem in order to bring the dimensionality down to computationally tractable levels, this inversion framework is able to take advantage of mesoscale transport simulations and more of the complexity of spatial and temporal covariances in the surface CO2 fluxes. This approach was successfully implemented over one month with an identical‐twin observing system simulation experiment (OSSE) using a set of assumptions about the prior flux uncertainties compatible both with continental‐scale uncertainty estimates and with comparisons of vegetation models to flux towers. The demonstration illustrates the potential of the newly developed inversion system to use high‐temporal‐resolution information from the North American tower network, to extract high‐resolution information about CO2 fluxes that is inaccessible to coarser resolution inversion systems, and to simultaneously optimize an ensemble of prior estimates. This demonstration sets the stage for regional flux inversions that can take full advantage of the high‐resolution data available in tower CO2 records and mesoscale atmospheric transport reanalyses, include more realistic prior error structures, and explore specifying prior fluxes with ensembles
    corecore