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Key Points: 

• Optimality theory is used to develop a simple model incorporating fast and 

acclimated responses of photosynthesis and stomatal conductance 

• Biogeochemical photosynthetic capacities adjust to midday light conditions  

• The new model simulates gross primary production on sub-daily timesteps across a 

range of different vegetation types and climate 
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Abstract 

Vegetation regulates land-atmosphere water and energy exchanges and is an essential component 

of land-surface models (LSMs). However, LSMs have been handicapped by assumptions that 

equate acclimated photosynthetic responses to environment with fast responses observable in the 

laboratory. These time scales can be distinguished by including specific representations of 

acclimation, but at the cost of further increasing parameter requirements. Here we develop an 

alternative approach based on optimality principles that predict the acclimation of carboxylation 

and electron-transport capacities, and a variable controlling the response of leaf-level carbon 

dioxide drawdown to vapour pressure deficit (VPD), to variations in growth conditions on a 

weekly to monthly time scale. In the “P model”, an optimality-based light-use efficiency model 

for gross primary production (GPP) on this time scale, these acclimated responses are implicit. 

Here they are made explicit, allowing fast and slow response time-scales to be separated and 

GPP to be simulated at sub-daily timesteps. The resulting model mimics diurnal cycles of GPP 

recorded by eddy-covariance flux towers in a temperate grassland and boreal, temperate and 

tropical forests, with no parameter changes between biomes. Best performance is achieved when 

biochemical capacities are adjusted to match recent midday conditions. This model suggests a 

simple and parameter-sparse method to include both instantaneous and acclimated responses 

within an LSM framework, with many potential applications in weather, climate and carbon-

cycle modelling.   

Plain Language Summary 

Vegetation regulates the exchanges of energy, water and carbon dioxide between the land and 

the atmosphere. Numerical climate models represent these processes, focusing mainly on their 

rapid variations in response to changes in the environment (including temperature and light) on 

timescales of seconds to hours. However, plants also adjust their physiology to environmental 

changes over longer periods within the season. Here we have adapted a simple model that 

formulates plant behaviour in terms of optimal trade-offs between different processes, so it 

simulates processes on both time scales. This model correctly reproduces the daily cycle of 

carbon dioxide uptake by plants, as recorded in different kinds of vegetation. We show that 

plants optimize their behaviour for midday conditions, when the light is greatest, and adjust to 

longer-term environmental variations on a timescale of about a week to a month. The model 

conveniently avoids the need to give specific, fixed values to physiological variables (such as 

photosynthetic capacity) for different types of plants. The optimality assumptions mean that the 

model gives equally good results in tropical, temperate and boreal forests, and in grasslands, 

using the same equations, and a very small number of input variables that are constant across the 

world. 

1 Introduction 

Vegetation plays a key role in the Earth system, regulating carbon, water and energy 

exchanges between vegetation and atmosphere. Transpiration, photosynthesis and respiration are 

the main processes that govern these exchanges and link vegetation to the climate (Bonan et al., 

1992, 2003, 2008). Evapotranspiration (ET, with accompanying latent-heat release) and 

photosynthesis are tightly linked. Transpiration is the dominant component of ET, hence plants 

are the main conduit of water from the soil to the atmosphere. Plants control both transpiration 

and the flux of carbon dioxide (CO2) into leaves by regulating the opening or closing of stomata. 
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Through photosynthesis plants convert solar radiation into growth, storing carbon that otherwise 

would remain in the atmosphere as a climate-modifying greenhouse gas. CO2 is removed from 

the atmosphere by photosynthesis, but released again by autotrophic (plant) and heterotrophic 

(soil microbial) respiration (Ciais et al., 2013). Contemporary land surface models (LSMs) 

represent all these interactions.  

Plants respond to environmental changes on different timescales. Fast (instantaneous) 

responses occur on timescales from seconds to hours; these are the plant responses to 

environmental stimuli before any type of physiological, structural or biochemical adjustment 

occurs. Longer-term responses (acclimation) occur over time scales of days to weeks (Mäkelä et 

al., 2019) or longer (Prentice and Cowling, 2013; Smith and Dukes, 2013). Plant acclimation is 

manifested as alterations in the short-term response functions of physiological processes (Smith 

and Dukes, 2013). Key photosynthetic traits, such as the maximum rate of carboxylation (Vcmax) 

or the maximum rate of electron transport (Jmax) vary systematically with growth conditions, 

both in space and in time (Rogers et al., 2017; Togashi et al., 2018).  

Originally LSMs used prescribed, plant functional type (PFT)-dependent values for 

photosynthetic traits. Modern versions of these models recognise the spatial and temporal 

variability of these traits within PFTs as a function of environmental conditions and thus include 

dynamic responses of photosynthetic (e.g. ORCHIDEE, JSBACH; see Fig.3 and Table 3 in 

Smith and Dukes, 2013) and (autotrophic) respiratory processes to temperature (e.g. JULES, 

CLM4.5, Atkin et al., 2008; Atkin et al., 2015; Lombardozzi et al., 2015; Kumarathunge et al., 

2019). The approach used to account for plant acclimation remains a model parametrization, and 

therefore the differences between PFTs are maintained (Kattge & Knorr, 2007; Atkin 2008; 

Lawrence et al., 2019). Furthermore, the inclusion of acclimation generally involves additional 

parameters, with a consequent increase in model complexity (Fisher and Koven, 2020). Attempts 

have been made to include plant acclimation to light in soil-vegetation-atmosphere (SVAT) 

models (e.g. Meir et al., 2002) and terrestrial biosphere (TBM) models (e.g. Luo and Keenan et 

al., 2020) but most current LSMs do not address all aspects of acclimation. Many studies (e.g. 

Walker et al., 2017; Smith et al., 2019) have stressed the importance of including acclimation in 

models — using photosynthetic parameters that vary according to the climate — and indicated 

that this should lead to improved future projections. It has also been suggested that models that 

do not account for acclimation might overestimate the positive feedback between climate and 

vegetation in future scenarios (Smith et al., 2017). 

Many current LSMs however continue to ignore acclimation and so, by considering only 

the instantaneous responses, they make no distinction between fast and slow processes. LSMs 

make inconsistent future projections of changes in the carbon and water cycles under the same 

future scenarios (Ciais et al., 2013; Prentice et al., 2015). They do not predict global primary 

production and its interannual variability correctly (Anav et al., 2015), and differ greatly, for 

example, in the responses of photosynthesis to temperature and CO2 (Anav et al., 2013). 

Neglecting plant acclimation could contribute to these problems. 

We do not advocate addressing acclimation by the accretion of additional model 

components and parameters. Instead, we propose an alternative theory-driven model 

development strategy. This strategy is based on eco-evolutionary optimality theory (Franklin et 

al., 2020), where eco-evolutionary refers to the fact that plants adjust to environmental 

conditions on both ecological and evolutionary timescales. This theory has been tested at various 

spatial and temporal scales, showing remarkable skill in predicting observed natural patterns at 
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leaf (Wright et al., 2003; Maire et al., 2012; Prentice et al., 2014; Wang et al., 2017; Smith et al., 

2019; Wang et al., 2020), plant (Franklin et al, 2012; Farrior et al., 2013; Lavergne et al.,  2020) 

and ecosystem (Franklin et al., 2014; Baskaran et al., 2017) levels. So far, the theory has been 

tested at weekly to monthly timesteps, i.e. at the timescales of acclimation. However, to apply 

this theory in LSMs it needs to be tested at sub-daily timesteps, thus including both instantaneous 

and acclimated timescales. 

Here we apply an existing optimality-based model for gross primary production (GPP), 

the P model (Wang et al., 2017; Stocker et al., 2020), to evaluate the potential of combining the 

two timescales in a parsimonious way. We extend the model to include both the instantaneous 

and acclimated responses in the simulation of GPP at a sub-daily timestep. We test the model 

using GPP derived from eddy covariance flux-tower measurements from boreal, temperate and 

tropical forests and also at a temperate grassland site. Our work provides a proof-of-concept for 

including acclimated responses in a LSM framework. 

 

2 Materials and Methods 

2.1 The P model 

The P model (Wang et al., 2017) is an optimality-based model of GPP driven by solar 

radiation, temperature, vapour pressure deficit (VPD), ambient CO2 and the fraction of absorbed 

photosynthetically active radiation (fAPAR), which is assumed to be related to leaf area index 

(LAI) by Beer’s law (Stocker et al., 2020; Figure 1). Although most applications of the P model 

have used satellite-derived fAPAR data as inputs (Stocker et al., 2020; Wang et al., 2017), the 

model has also been run by estimating LAI from predicted GPP (Qiao et al., 2020) thus making 

it possible to project future conditions. Here, however, we use satellite-derived fAPAR as a 

model input. The P model is based on the Farquhar et al. (1980) biochemical model of 

photosynthesis (FvCB), but incorporates additional eco-evolutionary optimality hypotheses 

which express the acclimation of plant photosynthetic capacities and stomatal behaviour to 

environmental changes: the coordination hypothesis (Maire et al., 2012) and the least-cost 

hypothesis (Prentice et al., 2014). The coordination hypothesis states that plants tend to optimize 

their performance by adjusting their photosynthetic capacities (Vcmax and Jmax, Table 1) to use all 

of the available light. This leads to the conclusion that Vcmax and Jmax should be continually 

adjusted to environmental variations according to general rules that do not depend on PFTs. The 

least-cost hypothesis states that plants minimize the sum of carbon and water costs — in terms of 

the maintenance costs for transpiration and carboxylation capacities. This hypothesis leads to an 

optimal ratio of the leaf-internal to ambient CO2 partial pressure (ci:ca, Table 1) mathematically 

similar to Medlyn et al.’s (2011) formula (Prentice et al., 2014) but not requiring any parameters 

to be specified per PFT.   

The P model implicitly represents plant adaptation and acclimation, via photosynthetic 

capacity and stomatal behaviour, over a time scale of days and weeks. It reproduces observed 

variation in Vcmax, Jmax and stomatal conductance for CO2 (gs: Table 1) along environmental 

gradients (Wang et al., 2017; Bloomfield et al., 2019; Smith et al., 2019; Dong et al., 2020; 

Wang et al, 2020). It also includes the measured effect of low temperatures on the intrinsic 

quantum efficiency of photosynthesis (φ0: Table 1) (Singsaas et al., 2001; Rogers et al., 2017, 

2019). The parameters in the P model are either approximately constant and known from 
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independent physiological studies, or estimated from analyses of independent data (c* and β: see 

Table 1). The P model performs as well as more parameter-rich models (e.g. Zhang et al., 2019) 

at weekly to monthly time steps (Stocker et al., 2020), i.e. at the time scale of acclimation of key 

quantities such as Vcmax and Jmax.  

 

 

Figure 1. Flowchart of the P model. The light blue circles are model inputs, the red rectangles 

are the temperature dependent parameters, and the green rectangle is the model output. For 

details of the P model equations see Wang et al. (2017) and Stocker et al. (2020). For parameter 

definitions see Table 1 of this study. 
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Table 1. Definitions of photosynthetic parameters, rates and constants used in the P model. 
Symbol Description Unit or value Reference 

Vcmax Maximum rate of carboxylation (or 

maximum rate of Rubisco activity) 

µmol CO2 m-2 s-1 Wang et al., 2017 

Jmax Maximum rate of electron transport µmol electrons m-2 s-1 Wang et al., 2017 

χ  =  ci:ca Ratio of leaf-internal to ambient partial 

pressures of CO2 

Unitless Prentice et al., 2014; 

Wang et al., 2017 

ci Leaf-internal CO2 partial pressure  Pa Wang et al., 2017 

ca Ambient CO2 partial pressure Pa  

ξ Sensitivity of χ to vapour pressure deficit 

(VPD or D) 

Pa1/2 Wang et al., 2017 

gs   Stomatal conductance to CO2 µmol CO2 m-2 s-1 Medlyn et al., 2011; 

Prentice et al., 2014 

φ0 Intrinsic quantum efficiency of 

photosynthesis 

mol mol-1 Rogers et al., 2017, 

2019 

φ0 (T) Temperature dependence function of 

quantum efficiency 

mol mol-1 Bernacchi et al., 

2003 

β The ratio of cost factors for carboxylation 

and transpiration capacities at 25 °C 

146 (unitless) Stocker et al., 2020 

c* The cost factor for electron-transport 

capacity 

0.41 (unitless) Wang et al., 2017 

KC Michaelis-Menten constant for 

carboxylation 

Pa Farquhar et al., 

1980; Bernacchi et 

al. 2001 

KO Michaelis-Menten constant for oxygenation Pa Farquhar et al., 

1980; Bernacchi et 

al., 2001 

K The effective Michaelis-Menten coefficient 

for Rubisco kinetics 

Pa Farquhar et al., 1980 

Γ* Photorespiratory compensation point Pa Farquhar et al., 

1980; Bernacchi et 

al. 2001 

η* Temperature dependence of the viscosity of 

the water, relative to its value at 25°C 

unitless Huber at al., 2009 

Pa(z) Atmospheric pressure at given elevation (z) Pa Berberan-Santos et 

al., 1997 

J Rate of electron transport µmol electrons m-2 s-1 Smith, 1937  

AC Rubisco-limited assimilation rate µmol CO2 m-2 s-1 Farquhar et al., 1980 

AJ Electron-transport limited assimilation rate µmol CO2 m-2 s-1 Farquhar et al., 1980 

A Assimilation rate µmol CO2 m-2 s-1 Farquhar et al., 1980 
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2.2 Timescales of acclimation 

To implement the P model at a sub-daily timestep requires an explicit distinction between 

the fast (instantaneous) response of photosynthetic rates (Fig. 1) and the slower acclimated 

response of photosynthetic traits (Fig. 1). To account for the acclimation of photosynthetic traits 

we use a running mean of the model inputs. We tested three approaches to find the optimal 

timescale for acclimation: the ‘daily’ approach computes a running mean of average daytime 

conditions; the ‘3 hours’ approach considers an average of three values from the middle of each 

day; the ‘noon’ approach considers only conditions around midday. The inputs are used to obtain 

the optimal values of Vcmax and Jmax (eqs.1, 2). These represent the slow (acclimated) responses 

of the photosynthetic traits (Wang et al., 2017): 

𝑉𝑐𝑚𝑎𝑥[𝑜𝑝𝑡] = 𝜑0𝐼𝑎𝑏𝑠 [(𝑐𝑖 + 𝐾) (𝑐𝑖 + 2𝛤∗)⁄ ] √{1 − [𝑐∗ (𝑐𝑖 + 2𝛤∗) (𝑐𝑖 − 𝛤∗)]⁄ 2 3⁄
} (1) 

 

𝐽𝑚𝑎𝑥[𝑜𝑝𝑡] =  4 𝜑0𝐼𝑎𝑏𝑠
√1 {1 − [𝑐∗ (𝑐𝑖 + 2𝛤∗) (𝑐𝑖 − 𝛤∗)]⁄ 2 3⁄

}⁄ − 1⁄  (2) 

where ci is the leaf-internal CO2 partial pressure (Pa), Γ* is the photorespiratory compensation 

point (Pa), K is the effective Michaelis-Menten coefficient (Pa), φ0 is the intrinsic quantum 

efficiency of photosynthesis (mol mol-1), following the temperature dependence function φ0 (T) 

reported in Bernacchi et al. (2003), Iabs is the absorbed light, which is a product of the incoming 

photosynthetic photon flux density (PPFD, µmol photon m-2s-1) and fAPA. c*= 0.41 is a cost 

factor for electron transport capacity. 

A standard function for the temperature response of Vcmax and Jmax, the Arrhenius 

equation (eq.3), is used to adjust both photosynthetic traits from the average to the actual 

temperature (eqs.3a, 3b). This adjustment for each half-hourly timestep represents the 

instantaneous response in the model.  

𝑝𝑎𝑟𝑎𝑚 (𝑇1) = 𝑝𝑎𝑟𝑎𝑚 (𝑇0) exp[(𝛥 𝐻𝑎 𝑅)(1 𝑇0⁄ − 1 𝑇1⁄ )]⁄ (3) 

 

𝑉𝑐𝑚𝑎𝑥𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑉𝑐𝑚𝑎𝑥[𝑜𝑝𝑡] exp[(𝛥 𝐻𝑎 𝑅)(1 𝑇0⁄ − 1 𝑇1⁄ )]⁄ (3𝑎) 

𝐽𝑚𝑎𝑥𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐽𝑚𝑎𝑥[𝑜𝑝𝑡] exp[(𝛥 𝐻𝑎 𝑅)(1 𝑇0⁄ − 1 𝑇1⁄ )]⁄ (3𝑏) 

where T0 is the average temperature computed by a 15-day running mean (K) and T1 is the actual 

half-hourly temperature (K), R is the universal gas constant, and ΔHa is the activation energy 

(ΔHa, J mol–1). The parameter values in the Arrhenius equation are summarized in Bernacchi et 

al. (2001, 2003). 

Using the same logic for the stomatal conductance, we include a dynamic optimization of 

stomatal conductance operating on the ci:ca ratio (χ, eq. 4) to obtain acclimated and optimal 

values of ξ, a parameter that determines the sensitivity of χ to VPD (Prentice et al., 2014). The 

acclimated response of ξ to environmental conditions (see e.g. Lin et al., 2015; Marchin et al., 

2016) — is included in the ci formula (eq.5), which is then adjusted to match the actual VPD to 

include the fast response of stomata to VPD: 
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𝜒 =
𝛤∗

𝑐𝑎
+

(1 − 𝛤∗/𝑐𝑎)𝜉

𝜉 + √𝐷
(4) 

𝑐𝑖 =
𝜉𝑐𝑎 + 𝛤∗√𝐷

𝜉 + √𝐷
, 𝜉 = √

𝛽(𝐾 + 𝛤∗)

1.6𝜂∗
 (5) 

where ci is the leaf-internal and ca is the ambient CO2 partial pressure (Pa), D is the vapour 

pressure deficit (Pa), β = 146 is the ratio of the cost factors for carboxylation and transpiration 

capacities (at 25˚C) (Stocker et al., 2020), and η* is the viscosity of water relative to its value at 

25˚C. 

As the flow chart illustrates (Fig.1), Vcmax, Jmax, χ and thus ci, are necessary for computing 

the photosynthetic assimilation rates (Ac and AJ: Table 1). These are the two limiting rates for 

carbon assimilation; their minimum value gives the resulting GPP.  

2.3. Incorporating acclimation in a land-surface modelling framework 

Storing daily data in order to compute a running-mean would be computationally costly 

in a LSM context. We therefore tested whether the longer-term acclimation timescales could be 

mimicked based on a technique used to incorporate memory in other aspects of climate 

modelling, the exponential weighted moving average method. This method, here called the 

weighted mean approach, is used in forecasting systems that deal with inaccurate prediction 

caused by the insufficiency of historical observations and allows for a self-starting forecasting 

process without having to store past data (Yu et al., 2020). The method is used in a variety of 

applications in forecasting, from estimating soil moisture from precipitation (Campos de Oliveira 

et al., 2017) to vegetation acclimation processes (e.g. Vanderwel et al., 2015).  

The weighted mean approach computes a mean in which the contribution of antecedent 

days decays exponentially with distance from the present. This is expressed by the exponential 

moving average (EMA) equation (see Supplementary Information, Text S1, eq.7). Together with 

the Arrhenius equation (see SI, Text S1, eq.8), these two formulae are used to update both 

photosynthetic traits (i.e. Vcmax and Jmax) in this new schema. The logic of the weighted mean 

differs from that of the running mean approach because, instead of operating on the inputs to the 

model it affects Vcmax, Jmax, and ci directly. Specifically, the method uses the biochemical 

quantities at standard temperature, Vcmax25 and Jmax25. This is because at standard temperature 

(25°C) Vcmax25 reflects the quantity of active Rubisco in the canopy. First, the method requires 

the computation of optimal Vcmax and Jmax (eqs.1, 2) based on conditions at noon; then, using the 

reciprocal formula of the Arrhenius equation (h-1; see SI, Text S1, eq.3a***) Vcmax25 and Jmax25 

are obtained (see SI, Text S1, eq.6) and used in the EMA equation. Computing the EMA 

equation, the acclimated responses of Vcmax,25 and Jmax25 (for the current day) are obtained and 

then, with the canonical form of the Arrhenius equation (see SI, Text S1, eq.8), the instantaneous 

responses of both photosynthetic traits are computed at each half-hourly timestep. Like Vcmax,25 

and Jcmax,25, ξ should vary slowly; however, there is no ‘fast’ reaction to temperature, so the 

Arrhenius function is not needed. After having obtained ξ for the current day, ci is adjusted with 

the fast variation in VPD for each half-hourly timestep. Finally, these acclimated parameters — 

also adjusted to match the actual environmental conditions — are used to compute both 

photosynthetic rates (Ac, AJ) and thus GPP at a sub-daily timestep. 
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To initialize the model simulations, we assume that on the very first day available in the 

dataset, the acclimated responses of Vcmax25 or Jmax,25 (V25, eq.7) are given by V25,opt only. However 

the weight of V25,opt  decreases exponentially as time progresses (see SI, Text S1, eq.9). 

Therefore, it is necessary to apply a spin-up period of about 2 months before starting to look at 

the performance of the model. Then, we proceed with the application of eq.7 as discussed 

previously.  

The EMA equation includes a parameter (α), the constant smoothing factor in time. 

According to eq.9 in SI (Text S1), α = 0.067 corresponds to about 15 days of memory. We 

therefore set α = 0.067 for consistency with the running mean method. We also tested a range of 

alternative values of α: 0.33, 0.143, 0.1, 0.067, 0.033, 0.022 and 0.0167, corresponding to 3, 7, 

10, 15, 30, 45 and 60 days respectively.  

2.4 Data and Evaluation 

We compared model predictions with sub-daily observations from five sites in the 

FLUXNET2015 dataset (Pastorello et al., 2020) using the most recent common year (2014) for 

all five sites. We chose sites that represent a range of climate and vegetation types (Table 2): 

boreal forest (FI-Hyy), temperate deciduous broadleaf (US-UMB) and mixed (BE-Vie) forests, 

tropical forest (GF-Guy), and temperate grassland (CH-Cha). The FLUXNET data set provide 

meteorological variables (PPFD_IN, VPD_F, TA_F, CO2_F_MDS) on a half-hourly timestep at 

each site, as well as observed GPP. We used GPP based on the daytime partitioning method 

(GPP_DT_CUT_REF) (Lasslop et al., 2010; Pastorello et al., 2020). Since the FLUXNET2015 

dataset does not provide fAPAR, we obtained this from the MCD15A3H Collection 6 dataset 

(Myneni et al., 2015). The MODIS FPAR product has a spatial resolution of 500 m and a 

temporal resolution of four days. We used the version of these data from Stocker et al. (2020) 

that has been filtered to remove data points where clouds were present and linearly interpolated 

from 4 days to daily. We used linear interpolation to derive fAPAR on the same sub-daily 

temporal resolution as the meteorological forcing.  

We compared observed and simulated GPP over the growing season, where the growing 

season at each site was determined using the threshold approach defined by Lasslop et al. (2012). 

This approach defines the start and end of the growing season as the days that correspond to GPP 

values of >20% of the 0.05 and 0.95 quantile range.   

The FLUXNET2015 data set provides information about the quality of data, through the 

quality-flag variables (see supplementary Table SM1 in Pastorello et al., 2020). We removed 

data points where the quality control (QC) is flagged as medium or poor-quality gap fill prior to 

comparison with model outputs. Times when there are no meteorological or GPP observations 

are necessarily ignored in the comparisons. There is no information that can be used to assess the 

quality of the fAPAR data. 

Model goodness-of-fit was measured using R2, root-mean square error (RMSE) and the 

bias error (BE). The median RMSE, R2 and BE, were obtained by computing an RMSE, R2 and 

BE for each week during the growing season at each site. We estimated the number of weeks 

when model performance was reasonable by examining the RMSE distribution to determine a 

threshold to exclude outliers, which might be associated with data uncertainties. 
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Table 2. Summary of the characteristics of the FLUXNET2015 sites used for model evaluation. 
Site name Site ID Latitude 

(°) 

Longitude 

(°) 

Elevation 

(m) 

Mean annual 

temperature 

(° C) 

Mean annual 

precipitation 

(mm) 

 

IGBP 

Vegetation 

type 

Hyytiälä FI-Hyy 61.84741 24.29477 181 3.8 709 Evergreen 

needleleaf 

forest 

 

Vielsalm BE-Vie 50.30493 5.99812 

 

 

493 7.8 1062 Mixed 

forest 

 

University 

of 

Michigan 

Biological 

Station 

 

US-UMB 45.5598 -84.7138 234 5.83 803 Deciduous 

broadleaf 

forest 

French 

Guiana 

GF-Guy 5.27877 -52.92486 48 25.7 3041 Evergreen 

broadleaf 

forest 

 

Chamau 

 

CH-Cha 47.21022 8.41044 393 9.5 1136 Grassland 

 

3 Results 

We tested the optimal timescale for acclimation to light availability by comparing 

simulations using average daily inputs, 3-hourly average inputs centred on noon, and midday 

conditions. The use of average daily inputs leads to a substantial underestimation of the observed 

GPP at all of the test sites. However, model predictions of GPP using 3-hourly or midday inputs 

are both consistent with the observations. At BE-Vie (Fig.2), for example, model performance 

using average daily inputs is poorer (R2: 0.92) than the either 3-hourly averages (R2: 0.98) or 

midday conditions (R2: 0.98). This is also the case at the other four sites (SI Figures S1, S2, S3, 

S4). These results support the hypothesis that plants coordinate their biochemical capacities to 

match the maximum level of light during a day, optimising to midday rather than average 

daytime conditions. 

Comparison of predicted and observed GPP at all five sites shows that the running-mean 

model accurately mimics diurnal cycles of GPP (Fig. 3). The median R2 over all weeks (Table 3) 

ranges from 0.88 (Ch-Cha, US-UMB) to 0.98 (GF-Guy). The median RMSE ranges from 3.89 

µmol CO2 m
-2 s-1 (Ch-Cha) to 2.28 µmol CO2 m

-2 s-1 (BE-Vie). The median BE ranges from 2.04 

µmol CO2 m
-2 s-1 (GF-Guy) to 0.01 µmol CO2 m

-2 s-1 (BE-Vie). There does not appear to be a 

relationship between the quality of the model fit and the length of the growing season. The 

model produces a good fit to observations at most of the sites for at least 80% of the individual 

weeks in 2014 (Table 3). The poorest performance in terms of number of weeks simulated 

accurately (68%) is for FI-Hyy and probably reflects uncertainties in the fAPAR inputs for this 

site.    
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Figure 2.  Sub-daily trends in model inputs (A, B, C) during one week in August 2014 at the 

Vielsalm (BE-Vie) site and the simulated Rubisco-limited assimilation rate (AC; µmol CO2 m
-2 s-

1), electron-transport limited assimilation rate (AJ; µmol CO2 m
-2 s-1) and gross primary 

production (GPP) using the running mean approach with inputs for average daytime conditions 

(DAILY), averaged over three hours from the middle of the day (3HOUR) and around midday 

(NOON). Simulated GPP (GPPp) is shown in red and the GPP derived from eddy covariance 

flux-tower measurements (GPPo) is shown in grey, both expressed in µmol CO2 m
-2 s-1. Model 

inputs—Iabs, Ta, VPD—are in units of µmol Photon m-2 s-1, °C and Pa respectively.  
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Figure 3. Comparison of simulated gross primary production (GPPp) and the GPP derived from 

eddy covariance flux-tower measurements (GPPo) for a single week in August 2014 at each of 

the five FLUXNET2015 sites (site IDs are displayed in the top left corner). GPP is expressed in 

µmol CO2 m
-2 s-1 . 
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Table 3. Summary of model performance statistics (RMSE is the root mean square error, R2 is 

the coefficient of determination and BE is the bias or systematic error). The number of weeks 

(No. weeks) is the length of the growing season at each site. The percentage of good weeks is 

estimated after excluding those weeks where the RMSE exceeds a threshold value of twice the 

median RMSE. 
Site ID No. Weeks Median RMSE Median R2 Median BE % Good Weeks 

 

BE-Vie 52 2.28 0.94 

 

0.01 86.5 % 

FI-Hyy 38 2.53 

 

0.91 

 

0.99 68.4 % 

 

GF-Guy 52 3.67 

 

0.98 

 

2.04 82.7 % 

 

US-UMB 37 3.54 

 

0.88 

 

1.98 83.8 % 

CH-Cha 52 3.89 

 

0.88 

 

1.07 80.8 % 

 

 

The use of a 15-day period for calculating the running mean is a compromise. In three of 

the sites analysed, at shorter timescale (between three and seven days), there is the highest 

median RMSE and the lowest median R2 (SI, Fig.S5). After seven days the median R2 increases 

for each site, except for FI-Hyy, which also shows a sharper downward trend in the bias error 

than the other cases. Then, providing a longer timescale, beyond 15 days, there are no significant 

changes in the computed metrics, as the median RMSE and R2 are rather constant at four out of 

five sites. Although among these sites there are some differences, in most of the cases these 

results suggest that the optimum timeframe for acclimation is between 10 and 30 days, where 15 

days is an average timeframe across all five sites (SI, Fig.S5).  

Comparison between observed and simulated GPP shows very little difference between 

the running mean and weighted mean approaches. Visual comparison (Fig. 4) indicates that the 

two approaches produce essentially identical estimates of GPP at BE-Vie, FI-Hyy and GF-Guy. 

The weighted mean approach appears to produce marginally better results for the US-UMB site, 

but a marginally worse estimate at the CH-Cha site. Nevertheless, even for these two sites, the 

model performance using the weighted mean approach is consistent with the observed trends in 

the diurnal cycle. This shows it should be possible to include acclimation in LSMs at relatively 

low computational cost. 
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Figure 4. Comparison of the running mean (GPP_run.m) and weighted mean (GPP_weig.m) 

approaches for calculating gross primary production (GPP) for a single week in August 2014 at 

each of the five FLUXNET2015 sites. GPP is in units of µmol CO2 m
-2 s-1. 

 

4 Discussion 

We have developed a version of the P model that predicts GPP at sub-daily time scales. 

This model reproduces the diurnal cycle of GPP as recorded by flux-tower measurements across 

a range of different vegetation types. We have intentionally kept the model as simple as possible, 

as recommended e.g. by Prentice et al. (2015), in the interests of clarity. The model has few 

parameters, and their values are known from independent evidence. It does not distinguish 
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between PFTs. We have succeeded in obtaining good simulations of flux data based on a 

minimal representation of the canopy as a big leaf. The model’s complexities (Fig. 1) are only 

those of the Farquhar et al (1980) model itself, and those necessary to implement optimality 

hypotheses that have been extensively tested – see e.g. Smith et al. (2019) for Vcmax, Wang et al. 

(2017) for χ and the ratio Jmax:Vcmax.  

We have shown that plants adjust to midday conditions rather than average daytime 

conditions. It is reasonable to expect that plants would optimize to conditions during the midday 

period, when the light is greatest (Haxeltine and Prentice, 1996; Maire et al., 2012; Smith et al., 

2019). We have also shown that the optimal timeframe for acclimation of carboxylation and 

electron-transport capacities, and the response of leaf-level carbon dioxide drawdown to vapour 

pressure deficit (VPD) is 15 days. Accounting for environmental variations over longer time 

periods does not produce significant differences in model performance metrics. In the original 

version of the P model (Wang et al., 2017; Stocker et al., 2020), designed to simulate GPP at 

weekly to monthly time steps, these acclimated responses are implicit. Our methodology makes 

it possible to separate the time scales of acclimation. Our analyses show that this distinction 

between fast and slow responses is essential to correctly predict plants’ responses to the 

environment. 

The running mean and weighted averaging methods produce equally good simulations of 

the diurnal cycle of GPP. The weighted mean approach makes it possible to include acclimation 

in LSMs in a relatively straightforward way and to avoid prescribing different, fixed parameters 

for PFTs. Our results suggest that LSMs have had to specify different parameters for PFTs 

precisely because they do not represent acclimation. Plants growing in different environments 

have therefore had to be assigned different values of Vcmax25 and Jmax25. But simulation would be 

more accurate, as well as requiring fewer parameters, if acclimation were allowed universally (in 

time and space) – so accounting more realistically both for seasonal variation, and for responses 

to environmental change.  

5 Conclusions 

We have adapted an existing optimality-based modelling framework to operate 

successfully at sub-daily timescale. The P model, without PFT-dependent photosynthetic 

parameters, accurately predicts GPP at half-hourly timestep across a range of different biomes. 

The method we propose is able to manage both timescales of acclimation. The weighted mean 

approach is suitable for implementation in a LSM. Our results suggest a way forward for LSMs 

to reduce their dependence on multiple parameters while, at the same time, taking into account 

plants’ acclimation to the environment.   
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