94 research outputs found

    Discrete approximations for complex Kac-Moody groups

    Full text link
    We construct a map from the classifying space of a discrete Kac-Moody group over the algebraic closure of the field with p elements to the classifying space of a complex topological Kac-Moody group and prove that it is a homology equivalence at primes q different from p. This generalises a classical result of Quillen-Friedlander-Mislin for Lie groups. As an application, we construct unstable Adams operations for general Kac-Moody groups compatible with the Frobenius homomorphism. In contrast to the Lie case, the homotopy fixed points of these unstable Adams operations cannot be realized at q as the classifying spaces of Kac-Moody groups over finite fields. Our results rely on new integral homology decompositions for certain infinite dimensional unipotent subgroups of discrete Kac-Moody groups.Comment: New title and revised introduction, references added; results and proofs unchanged, 31 pages, 1 figur

    Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer

    Get PDF
    Rapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods lack specificity. In addition, identification of PCa biomarkers that can classify patients into high- and low-risk groups for disease progression at early stage will improve treatment decision-making. Here, we describe a set of protein-combination panels in urinary extracellular vesicles (EVs), defined by targeted proteomics and immunoblotting techniques that improve early non-invasive detection and stratification of PCa patients.We report a two-protein combination in urinary EVs that classifies benign and PCa patients (ADSV-TGM4), and a combination of five proteins able to significantly distinguish between high- and low-grade PCa patients (CD63-GLPK5-SPHM-PSA-PAPP). Proteins composing the panels were validated by immunohistochemistry assays in tissue microarrays (TMAs) confirming a strong link between the urinary EVs proteome and alterations in PCa tissues. Moreover, ADSV and TGM4 abundance yielded a high diagnostic potential in tissue and promising TGM4 prognostic power. These results suggest that the proteins identified in urinary EVs distinguishing high- and low grade PCa are a reflection of histological changes that may be a consequence of their functional involvement in PCa development. In conclusion, our study resulted in the identification of protein-combination panels present in urinary EVs that exhibit high sensitivity and specificity for PCa detection and patient stratification. Moreover, our study highlights the potential of targeted proteomic approaches-such as selected reaction monitoring (SRM)-as diagnostic assay for liquid biopsies via urinary EVs to improve diagnosis and prognosis of suspected PCa patients

    Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein

    Get PDF
    Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site

    Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.

    Get PDF
    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events

    The Drosophila melanogaster Seminal Fluid Protease “Seminase” Regulates Proteolytic and Post-Mating Reproductive Processes

    Get PDF
    Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females

    Complex Interplay of Evolutionary Forces in the ladybird Homeobox Genes of Drosophila melanogaster

    Get PDF
    Tandemly arranged paralogous genes lbe and lbl are members of the Drosophila NK homeobox family. We analyzed population samples of Drosophila melanogaster from Africa, Europe, North and South America, and single strains of D. sechellia, D. simulans, and D. yakuba within two linked regions encompassing partial sequences of lbe and lbl. The evolution of lbe and lbl is highly constrained due to their important regulatory functions. Despite this, a variety of forces have shaped the patterns of variation in lb genes: recombination, intragenic gene conversion and natural selection strongly influence background variation created by linkage disequilibrium and dimorphic haplotype structure. The two genes exhibited similar levels of nucleotide diversity and positive selection was detected in the noncoding regions of both genes. However, synonymous variability was significantly higher for lbe: no nonsynonymous changes were observed in this gene. We argue that balancing selection impacts some synonymous sites of the lbe gene. Stability of mRNA secondary structure was significantly different between the lbe (but not lbl) haplotype groups and may represent a driving force of balancing selection in epistatically interacting synonymous sites. Balancing selection on synonymous sites may be the first, or one of a few such observations, in Drosophila. In contrast, recurrent positive selection on lbl at the protein level influenced evolution at three codon sites. Transcription factor binding-site profiles were different for lbe and lbl, suggesting that their developmental functions are not redundant. Combined with our previous results on nucleotide variation in esterase and other homeobox genes, these results suggest that interplay of balancing and directional selection may be a general feature of molecular evolution in Drosophila and other eukaryote genomes

    Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture

    Get PDF
    (ABRIDGED) We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations

    Drosophila Duplication Hotspots Are Associated with Late-Replicating Regions of the Genome

    Get PDF
    Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases) but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans–Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is being driven to fixation by positive selection

    Indicios de participación ḏimmí o muladí en los asedios carolingios a Tortosa (804/806-809)

    Get PDF
    El siguiente artículo analiza los conceptos utilizados en la Vita Hludowici imperatoris del Astrónomo para designar a los combatientes andalusíes que defendieron Tortosa de los ataques carolingios entre los años 804/806 y 809. De todos esos términos, el de Mauri y el de cives destacan por encima de los demás y, en consecuencia, reciben un trato especial. Tras compararlos con los datos ofrecidos por otras fuentes latinas, musulmanas y arqueológicas, el estudio concluye que con el primero de esos conceptos se hace referencia a grupos de marineros andalusíes, los conocidos en las obras árabes como baḥriyyūn, y con el segundo a las elites hispano-godas de la ciudad de Tortosa

    Poster display II clinical general

    Get PDF
    corecore