13 research outputs found

    Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish

    Get PDF
    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. © 2016 Elsevier Inc

    Glycogen synthase kinase 3 phosphorylates Hypoxia-Inducible Factor 1 α and mediates its destabilization in a VHL-independent manner

    No full text
    Hypoxia-inducible transcription factor 1α (HIF-1α) is a key player in the response to hypoxia. Additionally, HIF-1α responds to growth factors and hormones which can act via protein kinase B (Akt). However, HIF-1α is not a direct substrate for this kinase. Therefore, we investigated whether the protein kinase B target glycogen synthase kinase 3 (GSK-3) may have an impact on HIF-1α. We found that the inhibition or depletion of GSK-3 induced HIF-1α whereas the overexpression of GSK-3β reduced HIF-1α. These effects were mediated via three amino acid residues in the oxygen-dependent degradation domain of HIF-1α. In addition, mutation analyses and experiments with von Hippel-Lindau (VHL)-defective cells indicated that GSK-3 mediates HIF-1α degradation in a VHL-independent manner. In line with these observations, the inhibition of the proteasome reversed the GSK-3 effects, indicating that GSK-3 may target HIF-1α to the proteasome by phosphorylation. Thus, the direct regulation of HIF-1α stability by GSK-3 may influence physiological processes or pathophysiological situations such as metabolic diseases or tumors

    NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages

    No full text
    Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91(phox) and CeCl(3) cytochemistry showed the presence of gp91(phox) and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b(558) is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b(558)-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5′-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b(558) under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNFα, and CD40L as physiological inducers of cyt b(558) exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b(558), which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b(558) did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b(558) depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell

    Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α1

    Get PDF
    Toll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific I.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF). Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of I.3 isoform of hif-1α in LNCaP cells allows poly(I:C)-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists

    The NADPH Oxidase Subunit NOX4 Is a New Target Gene of the Hypoxia-inducible Factor-1

    No full text
    NADPH oxidases generate reactive oxygen species (ROS). We studied the role of NOX4 under hypoxia. Hypoxia enhanced NOX4 expression in lung smooth-muscle cells and lung tissue due to HIF-1α binding and activation of the NOX4 promoter. HIF-1α–dependent NOX4 induction restored ROS levels after hypoxia and induced proliferation by hypoxia. The following citations were not referenced in the reference list or the reference/citation is not styled correctly: Kietzmann et al., 1999
    corecore