17 research outputs found

    Microsatellite Support for Active Inbreeding in a Cichlid Fish

    Get PDF
    In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences

    A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)

    Get PDF
    The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutionary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha

    Differentiation in morphology and electrical signalling in four species of para- and sympatric Marcusenius (Teleostei: Mormyridae) from Côte d’Ivoire, West Africa

    Get PDF
    Marcusenius Gill, 1862 species were sampled from the Bandama River and the Comoé River in Côte d’Ivoire, West Africa. Marcusenius gracilis sp. nov. was differentiated from M. senegalensis (Steindachner, 1870), Marcusenius ussheri (Günther, 1867) and M. furcidens (Pellegrin, 1920) in electric organ discharges (EOD), and morphologically from all other West African congeners. Principal component analysis showed significant morphological differentiation among the four Ivorian species. Principal component 1 was loaded most strongly by characters affecting swimming power and manoeuvrability. The morphologically most similar pair, M. furcidens and M. gracilis sp. nov., are distinguished by their EOD waveforms and a sexual dimorphism in the anal fin base in the latter not present in the former. M. ussheri is distinguished by a sexual dimorphism in its EOD waveform not observed in the other three species. This system is an opportunity to study how far the fine-tuning of character displacement among syntopic species can go

    Allozyme variation in natural and cultured populations in two tilapia species: Oreochromis niloticus and Tilapia zillii

    No full text
    We investigated the electrophoretic polymorphism at 30 protein loci in 27 wild and cultured populations of two tilapia species, Tilapia zillii and Oreochromis niloticus. Single and joint segregations were analysed at 12 polymorphic loci in full-sib families. All the loci showed single segregation in agreement with the Mendelian expectations, and two nonrandom joint segregations were found. In total, 26 loci were polymorphic and 12 were diagnostic between the two species. A pronounced differentiation was observed between the Ivory Coast and Nilo-Sudanian T. zillii populations (average Nei's standard genetic distance = 0.13). Within the Nilo-Sudanian region, the level of variation observed in O. niloticus and T. zillii was rather low when compared with other freshwater species analysed at similar macrogeographical scales. The same pattern of geographical differentiation was found between the west and east African populations in both species suggesting that this structuring mainly reflected the same palaeo-geographical events. Most of the geographical variation observed in the Nile tilapia populations analysed here was present in the cultured stocks. In contrast to fish-farmed stocks analysed in other countries, those from the Ivory Coast and Niger displayed neither evidence of loss of genetic diversity nor any trace of introgression with other cultured tilapia species, indicating that these stocks have been properly managed

    Successive invasion-mediated interspecific hybridizations and population structure in the endangered cichlid Oreochromis mossambicus.

    Get PDF
    Hybridization between invasive and native species accounts among the major and pernicious threats to biodiversity. The Mozambique tilapia Oreochromis mossambicus, a widely used freshwater aquaculture species, is especially imperiled by this phenomenon since it is recognized by the IUCN as an endangered taxon due to genetic admixture with O. niloticus an invasive congeneric species. The Lower Limpopo and the intermittent Changane River (Mozambique) drain large wetlands of potentially great importance for conservation of O. mossambicus, but their populations have remained unstudied until today. Therefore we aimed (1) to estimate the autochthonous diversity and population structure among genetically pure O. mossambicus populations to provide a baseline for the conservation genetics of this endangered species, (2) to quantify and describe genetic variation of the invasive populations and investigate the most likely factors influencing their spread, (3) to identify O. mossambicus populations unaffected by hybridization. Bayesian assignment tests based on 423 AFLP loci and the distribution of 36 species-specific mitochondrial haplotypes both indicate a low frequency of invasive and hybrid genotypes throughout the system, but nevertheless reveal evidence for limited expansion of two alien species (O. niloticus and O. andersonii) and their hybrids in the Lower Limpopo. O. mossambicus populations with no traces of hybridization are identified. They exhibit a significant genetic structure. This contrasts with previously published estimates and provides rather promising auspices for the conservation of O. mossambicus. Especially, parts of the Upper Changane drainage and surrounding wetlands are identified as refugial zones for O. mossambicus populations. They should therefore receive high conservation priority and could represent valuable candidates for the development of aquaculture strains based on local genetic resources
    corecore