1,160 research outputs found

    Sustainable valorisation of organic urban wastes : insights from African case studies

    Get PDF
    Understanding the problems and potentials of the organic waste stream is perhaps the single most important step that city authorities in Africa could take in moving towards sustainable, affordable, effective and efficient waste management. This publication presents four examples of recent attempts to manage organic waste sustainably in the African context. The participants in the ‘Nairobi organic urban waste’ project have structured this case exercise in order to use the case studies as object lessons, to harvest genuine insights into the feasibility of a variety of ways to successfully and sustainably valorise urban organic waste streams. Three contemporary case examples of compost production are presented. These include composting by a community-based organisation in the Kenyan private sector and by a public-private partnership in Malawi. In all three cases, the project and case study focus is on the relations between city waste and the agricultural supply chain. A fourth case study describes the technical and economic potential to produce and use biogas from urban organic waste

    Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations

    Full text link
    In this paper we elaborate on earlier work by the same authors in which a novel Bayesian inference framework for testing the strong-field dynamics of General Relativity using coalescing compact binaries was proposed. Unlike methods that were used previously, our technique addresses the question whether one or more 'testing coefficients' (e.g. in the phase) parameterizing deviations from GR are non-zero, rather than all of them differing from zero at the same time. The framework is well-adapted to a scenario where most sources have low signal-to-noise ratio, and information from multiple sources as seen in multiple detectors can readily be combined. In our previous work, we conjectured that this framework can detect generic deviations from GR that can in principle not be accomodated by our model waveforms, on condition that the change in phase near frequencies where the detectors are the most sensitive is comparable to that induced by simple shifts in the lower-order phase coefficients of more than a few percent (∼5\sim 5 radians at 150 Hz). To further support this claim, we perform additional numerical experiments in Gaussian and stationary noise according to the expected Advanced LIGO/Virgo noise curves, and coherently injecting signals into the network whose phasing differs structurally from the predictions of GR, but with the magnitude of the deviation still being small. We find that even then, a violation of GR can be established with good confidence.Comment: 15 pages, 7 figures, Amaldi 9 proceeding

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4 μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ
    • …
    corecore