330 research outputs found

    Topology Control for Secured Coverage in Wireless Sensor Networks

    Get PDF

    Numerical Simulation of MHD Fluid Flow inside Constricted Channels using Lattice Boltzmann Method

    Get PDF
    In this study, the electrically conducting fluid flow inside a channel with local symmetric constrictions, in the presence of a uniform transverse magnetic field is investigated using Lattice Boltzmann Method (LBM). To simulate Magnetohydrodynamics (MHD) flow, the extended model of D2Q9 for MHD has been used. In this model, the magnetic induction equation is solved in a similar manner to hydrodynamic flow field which is easy for programming. This extended model has a capability of simultaneously solving both magnetic and hydrodynamic fields; so that, it is possible to simulate MHD flow for various magnetic Reynolds number (Rem). Moreover, the effects of Rem on the flow characteristics are investigated. It is observed that, an increase in Rem, while keeping the Hartman number (Ha) constant, can control the separation zone; furthermore, comparing to increasing Ha, it doesn't result in a significant pressure drop along the channel

    Energy and exergy analysis of two novel hybrid solar photovoltaic geothermal energy systems incorporating a building integrated photovoltaic thermal system and an earth air heat exchanger system

    Get PDF
    In this paper, two novel configurations of the building integrated photovoltaic thermal (BIPVT)-compound earth-air heat exchanger (EAHE) system are proposed. Both the configurations operate in two modes, namely heating and cooling modes. In the heating mode of the configuration A, the cold outdoor air is twice preheated by passing through the EAHE and BIPVT systems. In the cooling mode of the configuration A, the hot outdoor air is precooled by flowing inside the EAHE system and the PV modules are cooled using the building exhaust air. The cooling mode of the configuration B is similar to the configuration A, while in the heating mode of the configuration B, the outdoor air first enters the BIPVT collector and then passes through the EAHE system. The energetic and exergetic performances of the configurations are investigated for climatic conditions of Kermanshah, Iran. In addition, the impacts of length, width, and depth of air duct located underneath the PV panels, air mass flow rate, length and inner diameter of the pipe of EAHE system on the annual average energetic and exergetic aspects of the best configuration of the BIPVT-EAHE system are evaluated. The outcomes revealed that the annual rate of thermal energy, electrical energy, and thermal exergy captured from the configuration A are respectively 3499.59, 5908.19, and 55.59 kWh, while these values for the configuration B are respectively 3468.16, 5969.87, and 51.76 kWh. In addition, it was found that the configuration A has superior energetic performance than the configuration B, while the overall exergetic performance of the configuration B is higher than the configuration A. Furthermore, it was depicted that both the energetic and exergetic performances of the suggested configurations intensify by augmenting the duct length, duct width, and tube diameter whereas they decline with an increase in the air mass flow rate and duct depth

    Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration

    Get PDF
    In this paper, numerical simulation of laminar flow and heat transfer of nanofluid on a group of heat exchanger tubes is described. For better prediction of the behavior of the nanofluid flow on the tube arrays, two-phase mixture model was used. To achieve this aim, heat transfer and laminar flow of two-phase nanofluid as cooling fluid at volume fraction of 0, 2, 4, and 6% solid nanoparticles of silver and Reynolds numbers of 100 to1800 were investigated for different Configurations of tube arrays. The results indicated when the nanofluid collides with the tube arrays, the growth of heat boundary layer and gradients increase. The increase in the growth of boundary layer in the area behind the tubes was very remarkable, such that at the Reynolds number of 100, due to diffusion of the effect of wall temperature in the cooling fluid close to the wall, it had a considerable growth. Further, from the second row onwards, the slope of pressure drop coefficient diagrams was descending. Among the different Configuration s of tubes and across all the investigated Reynolds numbers, square Configuration had the maximum pressure drop coefficient as well as the highest extent of fluid momentum depreciatio

    Investigation the effect of pulsed laser parameters on the temperature distribution and joint interface properties in dissimilar laser joining of austenitic stainless steel 304 and Acrylonitrile Butadiene Styrene

    Get PDF
    Direct laser joining of metal to plastic materials is one of the cost effective methods of joining. The demand for laser welding of stainless steels and thermoplastics is going on increase because of having many applications such as automotive, aerospace and aviation industries. This paper presents the experimental investigation of direct laser joining of stainless steel 304 and Acrylonitrile Butadiene Styrene (ABS). The effects of pulsed laser parameters including laser welding speed, focal length, frequency and power on the themperature field and tensile shear load was investigated. The results showed that excessive increase of the joint interface temperature mainly induced by high laser power density results in exiting of the more volume of the molten ABS from the stainless steel melt pool. Also, increasing the laser power density through decreasing the focal length or increasing the laser power led to an increase in the surface temperature, higher beam penetration and high volume of molten ABS. Decreasing the focal length from 5 to 2 mm significantly rose the temperature from 150 to 300 °C. By increasing the laser pulse frequency, the number of bobbles at the ABS interface surface remarkably increased where the temperature increased from 120 to 180 °C. The X-ray spectroscopy results showed the existence of the polymer elements on the metal surface at the joint interface zone. The tensile shear load clearly increased from 280 to 460 N with augmentation of laser average power from 180 W to 215 W. Applying higher levels of laser power has clearly decreased the tensile shear load due to creating bigger bobbles and more cavities at the adhesive zone

    Intensification of heat exchanger performance utilizing nanofluids

    Get PDF
    Heat exchangers are widely utilized in different thermal systems for diverse industrial aspects. The selection of HEx depends on the thermal efficiency, operating load, size, flexibility in operation, compatibility with working fluids, better temperature and flow controls, and comparatively low capital and maintenance costs. Heat transfer intensification of heat exchangers can be fulfilled using passive, active, or combined approaches. Utilizing nanofluids as working fluids for heat exchangers have evolved recently. The performance of heat exchangers employed different nanofluids depends mainly on the characteristics and improvement of thermophysical properties. Regarding the unique behavior of different nanofluids, researchers have attended noteworthy progress. The current study reviews and summarizes the recent implementations carried out on utilizing nanofluids in different types of heat exchangers, including plate heat exchangers, double-pipe heat exchangers, shell and tube heat exchangers, and cross-flow heat exchangers. The results showed that nanofluids with enhanced thermal conductivity, although accompanied by a considerable decrease in the heat capacity and raising viscosity, has resulted in performance enhancement of different heat exchangers types. So, the performance evaluation criterion that combines the thermal enhancement and increases the pumping power for any type of heat exchangers is requisite to evaluate the overall performance properly. The challenges and opportunities for future work of heat transfer and fluid flow for different types of heat exchangers utilizing nanofluids are discussed and presented
    corecore