53 research outputs found

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease

    Distributed changes of the functional connectome in patients with glioblastoma

    Get PDF
    Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence

    The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk

    Get PDF
    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people

    Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium

    Get PDF
    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need

    Immune factors and viral interactions in brain cancer etiology and outcomes, The 2016 Brain Tumor Epidemiology Consortium Meeting report.

    No full text
    The Brain Tumor Epidemiology Consortium (BTEC) is an international consortium that aims to advance development of multicenter and interdisciplinary collaborations that focus on research related to the etiology, outcomes, and prevention of brain tumors. The 17th annual BTEC meeting was held in Barcelona, Spain on June 21 - 23, 2016. The meeting focused on immune and viral factors that influence brain tumor development. Fundamentals of innate and adaptive immunity were reviewed, the role of immune checkpoint inhibitors in primary and secondary brain tumors was addressed, vaccination strategies for glioma treatment were presented, and the potential contribution of immune dysfunction and viruses tropic for glial cells in gliomagenesis was discussed. Further contributions addressed the risk of non-ionizing radiation, molecular and birth characteristics on brain tumor induction/outcomes, and patterns of care and effects of different treatments on brain tumor survival in the real world setting. The next BTEC meeting will be held in June 2017 in Banff, Canada, and will focus on brain tumor epidemiology in the era of precision medicine.


    Scientific Reports / Visualization of neuritic plaques in Alzheimers disease by polarization-sensitive optical coherence microscopy

    No full text
    One major hallmark of Alzheimers disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (A). In AD, degeneration of neurons is preceded by the formation of A plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic A plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic A plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile A plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.(VLID)469055

    Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia

    Full text link
    Hereditary spastic paraplegia (HSP) comprises a group of clinically and genetically heterogeneous disorders associated with spastic paraparesis (pure HSP) with or without additional neurological symptoms (complicated HSP). Here we present a case of an adult-onset, apparently autosomal-dominant, complicated form of HSP. Onset of clinical symptoms was at the age 40 years and characterised by slowly progressive corticospinal tract dysfunction, dysarthria, disorientation, extrapyramidal symptoms, and bilateral ptosis. Cranial MRI revealed hyperintensities on T2-weighted sequences mostly in the posterior limb of the internal capsule. The proband deceased at the age of 64 years. As morphological substrate for the slowly progressive clinical symptoms, comprehensive neuropathological and ultrastructural evaluation revealed a novel oligodendrogliopathy with distinctive, partly ubiquitinated and p62 positive fibrillar inclusions evolving into crystalloid deposits, containing elements of the oligodendroglial cytoskeleton (α- and β-tubulin, TPPP/p25). In the central nervous system, accumulation of crystalloid structures has been related to histiocytes but not to glial cells. This study has implications for the understanding on how the human central nervous system reacts to protracted dysfunction and disruption of the oligodendroglial cytoskeleton, including development of crystalloid structures, which have not yet been reported in neurodegenerative diseases including HSP

    5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement.

    Get PDF
    Intraoperative identification of anaplastic foci in diffusely infiltrating gliomas (DIG) with non-significant contrast-enhancement on MRI is indispensible to avoid histopathological undergrading and subsequent treatment failure. Recently, we found that 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence can visualize areas with increased proliferative and metabolic activity in such gliomas intraoperatively. As treatment of DIG is predominantely based on histopathological World Health Organisation (WHO) parameters, we analyzed whether PpIX fluorescence can detect anaplastic foci according to these criteria.We prospectively included DIG patients with non-significant contrast-enhancement that received 5-ALA prior to resection. Intraoperatively, multiple samples from PpIX positive and negative intratumoral areas were collected using a modified neurosurgical microscope. In all samples, histopathological WHO criteria and proliferation rate were assessed and correlated to the PpIX fluorescence status.A total of 215 tumor specimens were collected in 59 patients. Of 26 WHO grade III gliomas, 23 cases (85%) showed focal PpIX fluorescence, whereas 29 (91%) of 33 WHO grade II gliomas were PpIX negative. In intratumoral areas with focal PpIX fluorescence, mitotic rate, cell density, nuclear pleomorphism, and proliferation rate were significantly higher than in non-fluorescing areas. The positive predictive value of focal PpIX fluorescence for WHO grade III histology was 85%.Our study indicates that 5-ALA induced PpIX fluorescence is a powerful marker for intraoperative identification of anaplastic foci according to the histopathological WHO criteria in DIG with non-significant contrast-enhancement. Therefore, application of 5-ALA optimizes tissue sampling for precise histopathological diagnosis independent of brain-shift
    corecore