6,671 research outputs found

    Automatic computation of wing-fuselage intersection lines and fillet inserts with fixed-area constraint

    Get PDF
    Procedures for automatic computation of wing-fuselage juncture geometry are described. These procedures begin with a geometry in wave-drag format. First, an intersection line is computed by extrapolating the wing to the fuselage. Then two types of filleting procedures are described, both of which utilize a combination of analytical and numerical techniques appropriate for automatic calculation. An analytical technique for estimating the added volume due to the fillet is derived, and an iterative procedure for revising the fuselage to compensate for this additional volume is given. Sample results are included in graphical form

    Fuselage design for a specified Mach-sliced area distribution

    Get PDF
    A procedure for designing a fuselage having a prescribed effective area distribution computed from -90 deg Mach slices is described. This type of calculation is an essential tool in designing a complete configuration with an effective area distribution that corresponds to a desired sonic boom signature shape. Sample calculations are given for M=2 and M=3 designs. The examples include fuselages constrained to have circular cross sections and fuselages having cross sections of arbitrary shape. It is found that, for a prescribed effective area distribution having sharp variations, the iterative procedure converges to a smoothed approximation to the prescribed distribution. For a smooth prescribed area distribution, the solution is not unique

    Low energy spin fluctuations in the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}

    Full text link
    We report inelastic neutron scattering measurements performed on a single crystal of the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}, which is at the borderline between an antiferromagnetically ordered and a paramagnetic ground state. Intensity maps as a function of wavevector and energy (0.1<E<1.20.1<E<1.2 meV) were obtained at temperatures T=0.1T=0.1 and 2 K, using the time-of-flight spectrometer IRIS. An unexpected saturation of the relaxation rate and static susceptibility of the spin fluctuations is found at low temperatures.Comment: 2 pages, 2 figures, SCES'04 Proceeding

    Automatic computation of Euler-marching and subsonic grids for wing-fuselage configurations

    Get PDF
    Algebraic procedures are described for the automatic generation of structured, single-block flow computation grids for relatively simple configurations (wing, fuselage, and fin). For supersonic flows, a quasi two-dimensional grid for Euler-marching codes is developed, and some sample results in graphical form are included. A type of grid for subsonic flow calculation is also described. The techniques are algebraic and are based on a generalization of the method of transfinite interpolation

    Optical Polarization and Spectral Variability in the M87 Jet

    Get PDF
    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from 20\sim 20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (αUVO0.5\alpha_{UV-O}\sim0.5, FνναF_\nu\propto\nu^{-\alpha}), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ\sigma upper limits of 0.5δ0.5 \delta parsecs and 1.02cc on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I,P)(I,P) plane. The nucleus has a much steeper spectrum (αUVO1.5\alpha_{UV-O} \sim 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.Comment: 14 pages, 7 figures, ApJ, in pres

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    Migration then assembly: Formation of Neptune mass planets inside 1 AU

    Full text link
    We demonstrate that the observed distribution of `Hot Neptune'/`Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration post-assembly. This is achieved only if the amount of mass in rocky material is 50\sim 50--100M100 M_{\oplus} interior to 1 AU. Such a reservoir of material implies that significant radial migration of solid material takes place, and that it occur before the stage of final planet assembly. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenario are that most planets in the `Hot Neptune/Super-Earth' class inhabit multiple-planet systems, with characteristic orbital spacings. The model also provides a natural division into gas-rich (Hot Neptune) and gas-poor (Super-Earth) classes at fixed period. The dividing mass ranges from 3M\sim 3 M_{\oplus} at 10 day orbital periods to 10M\sim 10 M_{\oplus} at 100 day orbital periods. For orbital periods <10< 10 days, the division is less clear because a gas atmosphere may be significantly eroded by stellar radiation.Comment: 41 pages in preprint style, 15 figures, final version accepted to Ap

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit

    Two super-earths orbiting the solar analog HD 41248 on the edge of a 7 : 5 mean motion resonance

    Get PDF
    J. S. Jenkins, M. Tuomi, R. Brasser, O. Ivanyuk, and F. Murgas, 'Two super-Earths orbiting the solar analog HD 41248 on the edge of a 7:5 mean motion resonance', The Astrophysical Journal, Vol. 771:41 (13 pp), first published online 14 June 2013. The version of record is available online at doi: 10.1088/0004-637X/771/1/41 © 2013. The American Astronomical Society. All rights reserved.There are a growing number of multi-planet systems known to be orbiting their host stars with orbital periods that place them in mean motion resonances (MMRs). These systems are generally in first-order resonances and dynamical studies have focused their efforts on understanding the origin and evolution of such dynamically resonant commensurabilities. Here we report the discovery of two super-Earths that are close to a second-order dynamical resonance orbiting the metal-poor ([Fe/H] = -0.43 dex) and inactive G2V star HD 41428. We analyzed 62 HARPS archival radial velocities for this star that, until now, exhibited no evidence for planetary companions. Using our new Bayesian Doppler signal detection algorithm, we find two significant signals in the data, with periods of 18.357 days and 25.648 days, indicating they could be part of a 7:5 second-order MMR. Both semi-amplitudes are below 3 m s-1 and the minimum masses of the pair are 12.3 and 8.6 M⊕, respectively. Our simulations found that apsidal alignment stabilizes the system, and even though libration of the resonant angles was not seen, the system is affected by the presence of the resonance and could still occupy the 7:5 commensurability, which would be the first planetary configuration in such a dynamical resonance. Given the multitude of low-mass multi-planet systems that will be discovered in the coming years, we expect that more of these second-order resonant configurations will emerge from the data, highlighting the need for a better understanding of the dynamical interactions between forming planetesimals.Peer reviewe
    corecore