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Introduction

The problem of generating grids for flow calcu-

lations over airplane configurations is important be-

cause the grid represents the object on which the
flow code operates. Several sophisticated procedures

have been developed for generating grids for fairly

complex configurations from specifications read in
from the screen by interactive methods. (See ref. 1.)

However, such hands-on interactive methods are too

time-consuming to be feasible when geometries must

be modified frequently and automatically, as in opti-

mal design calculations. Many trade-off studies can

be performed without the complete detailed airplane

geometry, as for example, wing-fuselage or wing-

fuselage-fin configurations. For such simplified con-
figurations, great generality in grid-generation tech-

niques is not required and simpler procedures that
can be automated become appropriate.

The purpose of this paper is to describe one such

automatic grid-generation procedure. The algebraic
method used is a variant and generalization of the

method of transfinite interpolation. Examples of its

application to generating an Euler-marching grid and

a grid for subsonic flow calculation are provided.
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cross-section a_spect ratio

indices for 4, r/, _ grid surfaces, respectively

input parameter to control X

superellipticity exponent (eqs. (3) and (4))

radius of grid outer boundary

two-dimensional position vector with

components y, z

arc length

Cartesian coordinates (longitudinal, lateral,

and vertical body axis, respectively)

z location of symmetry line for superellipse

blending functions

superellipse angle parameter

scaling function

grid coordinates

superellipse scale parameter

superellipse eccentricity parameter

variable defined by equation (8)

Subscripts:

g generic grid point

i inner

max maximum value

n nondimensionalized quantity

o outer boundary

s surface

u upstream grid limit

Procedure

The geometry input is normally in the wave-drag,
or Harris, format. (See ref. 2.) This format describes

the configuration as a set of separate components and

is convenient for making changes in geometry param-
eters. The geometry is read into a program (ref. 3)

that completes the geometry by computing the wing-

fuselage and fin-fuselage intersection lines and that

generates a surface grid. (Sec fig. 1.) To initiate

the volume grid calculation, a new surface grid is

computed by interpolating in the initial grid along
x = Constant lines. Then an outer boundary shape

is specified, and the grid is generated by interpolation
between the surface and this outer boundary. Details

of this procedure follow.

Surface Grid

For the initial surface grid lines, points are distrib-

uted along x = Constant cuts on the fuselage ahead

of the wing. In the wing region, the wing lofting lines
are extended to the fuselage surface by the method
of reference 3 and then are continued around the

fuselage along x = Constant lines. (See fig. 2.)

Now, a new surface grid is computed by inter-

polating in the original grid at x = Constant sta-
tions. Because the grid is already laid out this way

on the fuselage, the interpolation there involves only
the x variable. On the wing, the interpolation is a

matter of locating where the lofting lines intersect
the x = Constant planes.

Care must be taken in distributing the points

on these lines so that grid continuity is ensured.

The main problem locations are at the wing and

fin leading and trailing edges. The grid variable in
the circumferential direction at x = Constant is de-

noted r]. (See fig. 3.) To prevent the constant-r/sur-
face lines from running from the lower to the up-

per surface or vice versa, the entire configuration is

treated as separate upper and lower surfaces. Thus,
each x = Constant line consists of two distinct seg-

ments, one on the upper surface and the other on the
lower surface. In the wing region the break is taken



at thewingtip. Onthefuselageaheadof thewing,
it is takenat thesameangularlocationasthepoint
wherethewingleadingedgeintersectsthe fuselage.
(Seefig. 3.) This systemensuresgrid continuityin
the77directionat thewingleadingedge.

Gridpointsaredistributedalongeachof theup-
perandlowersurfacex = Constant lines as a func-

tion of arc length. The arc is initiated at the y = 0

point, and the cumulative arc length s is computed

at successive points out to the break point. This
procedure enables us to express the grid points on

the line as functions of s (i.e., y(s), z(s)). Then this

distribution of points can be replaced through inter-

polation by any desired distribution. At present this
distribution function is specified by a cubic polyno-

mial with arbitrary coefficients to permit flexibility

in designing the surface grid. To ensure continuity in
the longitudinal direction, this distribution is spec-

ified globally so that if, for example, the points are

congested near the wing tips, they will Mso be con-

gested on the fuselage ahead of the wing in the region
that corresponds to the wing tips. An example of the

resulting surface grid is shown in figure 4.

At the wing trailing edge a problem arises when

the x = Constant lines are interpolated from thc

initial surface grid. If the trailing edge is swept, a gap
occurs between the intersection of an x = Constant

plane with the fuselage and its intersection with the

wing. (See fig. 5.) This problem is treated by

including the gap region as part of the surface grid

(fig. 6) but labeling the grid points in this region
as wake points. To maintain continuity, the wake is

assumed to intersect tile fuselage at the same angular

location as the wing trailing edge. A vertical fin

would be treated similarly if present.

Volume Grid

After the surface grid has been established, the in-
dividual two-dimensional grid surfaces for an Euler-

marching grid are generated by specifying a corre-

sponding distribution of points on an appropriate

outer boundary line and then interpolating between
the surface points and outer boundary points. An ap-

propriate outer boundary shape is a circle that lies

slightly outside the Mach cone whose vertex is at or

slightly ahead of the nose of the configuration. If

rs denotes a vector representation of the cut through
the body surface and ro denotes the outer bound-

ary shape, then a straightforward transfinite inter-

polation for the intermediate grid-line shapes (lines

of constant _) would result from a variation of the
form

rg = (1 - a)rs + aro (1)

where a is a blending, or homotopy, function of

that varies continuously and monotonically from 0
to 1.

For this type of grid the skewness can be severe,

as is illustrated in figure 7. Somewhat better control
over the grid shape can be realized by the method of

reference 4. The inner and outer boundary shapes

arc nondimensionalized, thereby reducing them to

the same scale. Then the homotopy function can be
used to establish a pure shape variation, whereas the

scaling is specified by an independent function _(_).
Thus,

rg = A[(1 - c_)rns + arno] (2)

However, for difficult shapes such as that shown in

figure 7, this generalization is not sufficient. The ra-

dial (77 = Constant) grid lines near the wing-fuselage

juncture need a larger lYl component to be more
nearly normal at the body surface. This effect

could be accomplished by replacing the circular outer

boundary with a highly eccentric ellipse. However,
an eccentric ellipse would not be appropriate for flow

calculation, and it would not help the problem at

the wing tips, where the 7/= Constant lines require
a larger z component to reduce the skewness.

An outer boundary shape that would reduce the

skewness at both the wing tips and the wing-fuselage

juncture is a superellipse, which is defined by

Y = XPl cos O]qsign(cos O)

z = Pl sin O]qsign(sin O) +

(3)

(4)

where X is the eccentricity parameter and q is the
superellipticity exponent. This outer boundary

shape does reduce the ske_mess at the body sur-

face, but it does not yield a practical grid away from

the surface. However, this problem can be overcome
by making a further generalization of the transfinite

interpolation formula. Returning to equation (1), we

replace the fixed circular outer boundary shape ro
with a function that varies parametrically with _ such

that it becomes a circle at tile largest value of _. At

small values of _ (near the surface), ro becomes the

supercllipse of equation (3). Between these two ex-
tremes, ro is defined as a smooth blend of the inner

function rio and the outer function roo by a homotopy
function 7(_):

ro=(1 - 7)rio+Troo (5)

This function replaces ro in equation (1).



In equation(3), both the eccentricityparam-
eterX and the superellipticity exponent q are speci-
fied in terms of the cross-section aspect ratio

A = Ymax/Fusclage semiheight. Thus,

A-1

X=I + p (_-_) (6)

where p is an adjustable input parameter of the order
of 1 and

q(_) = ¢ +(1 - _b)7(_ ) (7)

where the variable

1
= (8)

X"

Also in equation (4) the z symmetry line z = _ is

taken where the superellipse is intersected by a line
drawn from the fuselage center through the wing tip.

Thus, near the surface, the influence of ro on the

grid shape is that of a superellipse, but far from the
surface it becomes that of a circle. This effect is seen

in the example shown in figure 8.

Several typical surfaces of the complete three-

dimensional grid are shown in figure 9. Figure 10
shows results of an Euler flow calculation on this grid.

The marching procedure used for this calculation is
similar to that of reference 5. For the half plane

y > 0, the grid dimensions are 97, 97, and 49 in the

_, _, and _ directions, respectively.

Subsonic Grid

A grid for calculating subsonic flows over a con-

figuration must extend well ahead of, behind, and
to the sides of the configuration. One type of sub-

sonic grid can be generated starting with the same

techniques used to generate the Euler grid but by

changing the outer boundary shape from a cone to a
more appropriate shape. Then, the two-dimensional
surfaces at x = Constant cuts are changed into three-

dimensional surfaces by distorting them out of the

x -- Constant planes.

An example has been calculated for which the

outer boundary is taken to be a semiellipsoid up-
stream that is connected to a cylinder downstream

at the x station for which the wing attains its max-

imum span. (See fig. 9(a).) The radius distribution

of the ellipsoid is

r = rmax 1 -- L(_-u--_ _ss)]
(9)

where Xu is the grid station that is farthest upstream.

The radius of the downstream cylinder is, of course,

r = rmax (10)

The two-dimensional x = Constant grid surfaces are
converted to three-dimensional surfaces by supple-

menting equation (2) with an x variation

x 9 =(1- 5)x8 +&o (11)

where the subscript g is the generic grid point and 5

is a homotopy function. Typical surfaces of this grid

are shown in figure 11.

Concluding Remarks

Several procedures for the automatic generation

of flow computation grids for relatively simple config-
urations have been described. For supersonic flows, a

quasi-two-dimensional grid for marching Euler codes
was developed, and some sample results in graphi-
cal form were included. For subsonic flows, the pro-

cedure was modified by distorting the x = Constant

grid surfaces out of plane and by specifying a more
appropriate outer boundary shape. The techniques

are algebraic and are based on a generalization of the

transfinite interpolation method.
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(a) Originalconfiguration(fromwave-dragdata).

(b) Configurationwithcomputedintersectionline(lowersurface).

Figure1. Calculatedwing-fuselageintersection.



Figure2. Close-upviewof intersectionlineandsurfacegrid nearwingleadingedge.
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(a) Gridsectionaheadof wingleadingedgeintersectionwith fuselage.

, = Constant

;ill = Constant

(b) Grid section behind wing leading edge intersection with fuselage.

Figure 3. Grid sections displaying grid coordinates and circumferential distribution of grid lines.

6



Figure4. Revisedsurfacegrid to initialize Euler-marchinggrid. x = Constant lincs are computed by

interpolating in original grid and redistributing points.

Gap between fuselage
and swept wing

Figure 5. Plan view illustrating gap that occurs in x = Constant grid line when trailing edge is swept.
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Figure 6. Plan view of configuration with wake.
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1"I= Constant

= Constant

(a) Wing-body juncture region.

Figure 7. Grid skewness problem at body surface.
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(b) Wing-tip region.

Figure 7. Concluded.
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(a) Wing-body juncture region.

Figure 8. Grid skewness reduction at body surface.
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(b) Wing-tipregion.

Figure8. Concluded.
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(a) j = 1 and 97 surfaces (upper grid surface diluted to improve clarity).

(b) k = 12 surface (grid diluted to improve clarity).

Figure 9. Typical surfaces of Euler-marching grid.
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Figure10.Euler-marchingflowsolution;pressurecontoursat x = 97 station.
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(a) j = 1 and 97 surfaces.

Figure 11. Typical surfaces of subsonic flow grid.
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(b) j = 49 surfacc.

Figure 11. Continued.
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(c) k = 12 surface (grid diluted to improve clarity).

Figure 11. Continued.
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(d) i = 24 surface.

Figure 11. Concluded.
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