768 research outputs found

    Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed

    Get PDF
    Proceeding of: Fifteenth International Conference on Fluidization, Fluidization XV, Fluidization for Emerging Green Technologies, Montebello, Canada, May 22nd to 27th, 2016The present work experimentally studies the influence of vibration and gas velocity on the density-induced segregation of particles in a pseudo-2D vibrated fluidized bed. One half of the particles of the bed are ballotini spheres of density 2500 kg/m(3) and the other half are heavier ceramic particles of density 4100 kg/m(3) or 6000 kg/m(3). Digital Image Analysis is used to characterize the rate and extent of particle mixing with time for different gas velocities, vibration amplitudes and frequencies. The results of the experiments indicate that the vibration strength and the gas velocity have an important effect on both the evolution and the final extent of density-induced particle segregation. It was observed that by introducing vertical vibration to a bed that is fluidized close to minimum fluidization conditions the rate of segregation and the final segregation index of a mixture of light and dense particles is enhanced. However, for vibration strengths greater than a critical value around 3-4, the degree of segregation decreases due to a more vigorous three dimensional mixing of particles in the bed.This work has been partially funded by the Universidad Carlos III de Madrid (Ayudas a la movilidad 2015) and by the Spanish Ministry of Economy and Competiveness (project ENE2015/00188/001)

    Effects of EDP-420 on penicillin-resistant and quinolone- and penicillin-resistant pneumococci in the rabbit meningitis model

    Get PDF
    Objectives To test the efficacy of EDP-420, a new ketolide, in experimental pneumococcal meningitis and to determine its penetration into the CSF. Methods The experimental rabbit model was used in this study and EDP-420 was tested against a penicillin-resistant and a penicillin- and quinolone-resistant mutant. EDP-420 was also tested against both strains in time-killing assays over 8 h in vitro. Results In experimental meningitis, EDP-420 produced a bactericidal activity comparable to the standard regimen based on a combination of vancomycin with ceftriaxone against a penicillin-resistant Streptococcus pneumoniae and a penicillin- and quinolone-resistant S. pneumoniae isolate. The penetration of EDP-420 into inflamed meninges was 38% after an iv injection of 10 mg/kg. The bactericidal activity of EDP-420 was also confirmed in in vitro time-killing assays. Conclusions EDP-420 is an efficacious alternative treatment in pneumococcal meningitis, especially when resistant strains are suspecte

    Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity

    Get PDF
    Objective To develop and evaluate the performance of a novel method for predicting neonatal respiratory morbidity based on quantitative analysis of the fetal lung by ultrasound. Methods More than 13¿000 non-clinical images and 900 fetal lung images were used to develop a computerized method based on texture analysis and machine learning algorithms, trained to predict neonatal respiratory morbidity risk on fetal lung ultrasound images. The method, termed ‘quantitative ultrasound fetal lung maturity analysis’ (quantusFLM™), was then validated blindly in 144 neonates, delivered at 28¿+¿0 to 39¿+¿0¿weeks' gestation. Lung ultrasound images in DICOM format were obtained within 48¿h of delivery and the ability of the software to predict neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, was determined. Results Mean (SD) gestational age at delivery was 36¿+¿1 (3¿+¿3) weeks. Among the 144 neonates, there were 29 (20.1%) cases of neonatal respiratory morbidity. Quantitative texture analysis predicted neonatal respiratory morbidity with a sensitivity, specificity, positive predictive value and negative predictive value of 86.2%, 87.0%, 62.5% and 96.2%, respectively. Conclusions Quantitative ultrasound fetal lung maturity analysis predicted neonatal respiratory morbidity with an accuracy comparable to that of current tests using amniotic fluid.Peer ReviewedPostprint (published version

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin

    Selective changes in human corneal sensation associated with herpes simplex virus keratitis

    Get PDF
    PURPOSE. To determine corneal sensitivity to selective mechanical, chemical, and thermal (heat and cold) stimulation in patients with a history of herpes simplex virus (HSV) keratitis. METHODS. Corneal sensitivity to different modalities of stimulus was determined in both eyes of 16 patients with unilateral HSV keratitis diagnosed 1 to 12 months before the study. On slit lamp examination, 13 HSV-affected eyes showed corneal scarring or opacities, and three had no signs of previous keratitis. Corneal sensitivity was determined with the Belmonte gas esthesiometer. Mechanical, chemical, heat, and cold stimuli were applied on the central cornea. Eyes from 10 healthy subjects served as controls. RESULTS. In all control and contralateral eyes, selective mechanical, chemical, heat, and cold stimulation evoked sensations of subjective intensity proportional to the magnitude of the applied stimulus. In one HSV patient, the affected cornea was unresponsive to all types of stimuli, four lost only corneal sensitivity to mechanical stimulation, and three lost only sensitivity to heat. Mechanical (P Ͻ 0.005) and heat (P Ͻ 0.05) thresholds were raised in HSV eyes, whereas thresholds for CO 2 were not modified. Also, HSV subjects identified poorly the intensity of mechanical, chemical, and heat stimuli, whereas sensitivity to cold stimulation was unaffected. CONCLUSIONS. In eyes that had had HSV keratitis, corneal sensitivity to mechanical forces and heat was significantly impaired, suggesting that axonal damage and/or altered expression of membrane ion channels involved in transduction and membrane excitability affects primarily the mechano-and polymodal nociceptor terminals. Corneal cold-sensitive terminals remain largely unaffected. (Invest Ophthalmol Vis Sci. 2010; 51:4516 -4522) DOI:10.1167/iovs.10-5225 C orneal infection by herpes simplex virus (HSV) is a common condition that usually develops as an acute or chronic corneal inflammation. 1 The disease is most often due to reactivation of a latent infection of trigeminal sensory neurons innervating the cornea and possibly also of corneal epithelial cells by the neurotropic HSV (HSV1, HSV2, or both). 2,3 As a result, the patient develops an epithelial keratitis. This condition is in many cases recurrent, mainly after HSV-1 infection, 2,5-7 HSV infection often affects also the corneal stroma, inducing a herpes stromal keratitis (HSK). Occasionally, HSV reaches the corneal endothelium, causing endothelial cell loss and permanent corneal swelling. Recurrent episodes may eventually lead to corneal scarring, opacities, and irregular astigmatism. Herpes simplex infection is a common cause of corneal sensory loss, 8 although less severe than in keratitis caused by reactivation of varicella-zoster virus. 10 Sensations evoked at the ocular surface result from the activation of several functional classes of primary sensory neurons located in the trigeminal ganglion (TG), the peripheral axons of which innervate the anterior segment of the eye. 11-13 Polymodal nociceptors, the most abundant receptor type in the cornea, respond to noxious or near-noxious mechanical and thermal stimuli, to exogenous irritants, and to inflammatory agents, predominantly mediating burning pain. Mechanonociceptors are activated only by noxious mechanical forces and possibly elicit mainly pricking pain, whereas cold thermoreceptors respond to small temperature reductions of the corneal surface and evoke cooling and perhaps dryness sensations referred to the eye. 14 -16 Unpleasant and painful ocular sensations arising in HSV keratitis patients may be due to an altered neural activity in infected TG corneal sensory neurons. METHODS Patients Sixteen patients (nine women and seven men; age 40.4 Ϯ 3.7 years, range 16 -66) with a history of unilateral HSV keratitis during the year From th

    Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants

    Get PDF
    AbstractBackgroundRespiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear.MethodsWe infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates.FindingsGWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV.InterpretationTranslational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies)

    Study of J/ψ azimuthal anisotropy at forward rapidity in Pb-Pb collisions at √sNN=5.02 TeV

    Get PDF
    The second (v2) and third (v3) flow harmonic coefficients of J/ψ mesons are measured at forward rapidity (2.5 < y < 4.0) in Pb-Pb collisions at √ sNN = 5.02 TeV with the ALICE detector at the LHC. Results are obtained with the scalar product method and reported as a function of transverse momentum, pT, for various collision centralities. A positive value of J/ψ v3 is observed with 3.7σ significance. The measurements, compared to those of prompt D0 mesons and charged particles at mid-rapidity, indicate an ordering with vn(J/ψ) < vn(D0 ) < vn(h±) (n = 2, 3) at low and intermediate pT up to 6 GeV/c and a convergence with v2(J/ψ) ≈ v2(D0 ) ≈ v2(h±) at high pT above 6–8 GeV/c. In semicentral collisions (5–40% and 10–50% centrality intervals) at intermediate pT between 2 and 6 GeV/c, the ratio v3/v2 of J/ψ mesons is found to be significantly lower (4.6σ) with respect to that of charged particles. In addition, the comparison to the prompt D0 -meson ratio in the same pT interval suggests an ordering similar to that of the v2 and v3 coefficients. The J/ψ v2 coefficient is further studied using the Event Shape Engineering technique. The obtained results are found to be compatible with the expected variations of the eccentricity of the initial-state geometry.publishedVersio

    Spin alignment measurements using vector mesons with ALICE detector at the LHC

    Get PDF
    We present new measurements related to spin alignment of K*0 vector mesons at mid-rapidity for Pb–Pb collisions at √sNN = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production plane and 2nd order event plane. At low pT the spin density matrix element ρ00 for K*0 is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high pT. Similar values of ρ00 are observed with respect to both production plane and event plane. Within statistical and systematic uncertainties, ρ00 values are also found to be independent of √sNN. ρ00 also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions with respect to both the kinematic planes. The measurements for K*0 in pp collisions at √s = 13 TeV and for K0S (a spin 0 hadron) in 20-40% central Pb–Pb collisions at √sNN = 2.76 TeV are consistent with no spin alignment.publishedVersio

    Who leads research productivity growth? Guidelines for R&D policy-makers

    Full text link
    [EN] This paper evaluates to what extent policy-makers have been able to promote the creation and consolidation of comprehensive research groups that contribute to the implementation of a successful innovation system. Malmquist productivity indices are applied in the case of the Spanish Food Technology Program, finding that a large size and a comprehensive multi-dimensional research output are the key features of the leading groups exhibiting high efficiency and productivity levels. While identifying these groups as benchmarks, we conclude that the financial grants allocated by the program, typically aimed at small-sized and partially oriented research groups, have not succeeded in reorienting them in time so as to overcome their limitations. We suggest that this methodology offers relevant conclusions to policy evaluation methods, helping policy-makers to readapt and reorient policies and their associated means, most notably resource allocation (financial schemes), to better respond to the actual needs of research groups in their search for excellence (micro-level perspective), and to adapt future policy design to the achievement of medium-long term policy objectives (meso and macro-level).Jiménez Saez, F.; Zabala Iturriagagoitia, JM.; Zofio, JL. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics. 94(1):273-303. doi:10.1007/s11192-012-0763-0S273303941Abbring, J. H., & Heckman, J. J. (2008). Dynamic policy analysis. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data (3rd ed., pp. 795–863). Heidelberg: Springer.Acosta Ballesteros, J., & Modrego Rico, A. (2001). Public financing of cooperative R&D projects in Spain: the concerted projects under the national R&D plan. Research Policy, 30, 625–641.Arbel, A. (1981). Policy evaluation in the dynamic input–output model. International Journal of Systems Science, 12, 255–260.Arnold, E. (2004). Evaluation research and innovation policy: A systems world needs systems evaluations. Research Evaluation, 13, 3–17.Arrow, J. K. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factor (pp. 609–625). Princeton: Princeton University Press and NBER.Autio, E. (1997). New, technology-based firms in innovation networks symplectic and generative impacts. Research Policy, 26, 263–281.Balk, B. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15, 153–183.Balzat, M., & Hanusch, H. (2004). Recent trends in the research on national innovation systems. Journal of Evolutionary Economics, 14, 197–210.Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking. Scandinavian Journal of Economics, 94, S211–S228.Bergek, A., Carlsson, B., Lindmark, S., Rickne, A., & Jacobsson, S. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.Bonaccorsi, A., & Daraio, C. (2005). Exploring size and agglomeration effects on public research productivity. Scientometrics, 63(1), 87–120.Buisseret, T. J., Cameron, H., & Georghiou, L. (1995). What difference does it make? Additionality in the public support of R&D in large firms. International Journal of Technology Management, 10, 587–600.Bustelo, M. (2006). The potential role of standards and guidelines in the development of an evaluation culture in Spain. Evaluation, 12, 437–453.Chavas, J. P., & Cox, T. M. (1999). A generalized distance function and the analysis of production efficiency. Southern Economic Journal, 66, 295–318.CICYT. (1987). Programa Nacional de Tecnología de los Alimentos. Madrid: Ministerio de Educación y Ciencia.CICYT (1988). Plan Nacional de Investigación Científica y Desarrollo Tecnológico 1988–1991. Ministerio de Educación y Ciencia, Secretaría de Estado de Universidades e Investigación, Madrid.Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-software. Boston: Kluwer Academic Publishers.David, P., Mowery, D., & Steinmueller, W. E. (1994). Analyzing the economic payoffs from basic research. In D. Mowery (Ed.), Science and technology policy in interdependent economies (pp. 57–78). Boston: Kluwer Academic Publishers.Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14, 263–279.Edquist, C., & Hommen, L. (2008). Comparing national systems of innovation in Asia and Europe: Theory and comparative framework. In C. Edquist & L. Hommen (Eds.), Small country innovation systems: Globalisation, change and policy in Asia and Europe (pp. 1–28). Cheltenham: Edward Elgar.Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, General, 120(3), 253–281.Førsund, F. R. (1993). Productivity growth in Norwegian ferries. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 352–373). New York: Oxford University Press.Førsund, F. R. (1997). The Malmquist productivity index, TFP and scale. University of Oslo, Oslo: Working Paper, Department of Economics and Business Administration.Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Printer Publishers.García-Martínez, M., & Briz, J. (2000). Innovation in the Spanish food & drink industry. International Food and Agribusiness Management Review, 3, 155–176.Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage Publications.Grammatikopoulos, V., Kousteiios, A., Tsigilis, N., & Theodorakis, Y. (2004). Applying dynamic evaluation approach in education. Studies in Educational Evaluation, 30, 255–263.Grifell-Tatjé, E., & Lovell, C. A. K. (1999). A generalized Malmquist productivity index. Top, 7(1), 81–101.Grimpe, C., & Sofka, W. (2007). Search patterns and absorptive capacity: A comparison of low- and high-technology firms from thirteen European countries. Discussion paper no. 07-062. Centre for European Economic Research (ZEW), Mannheim, Germany.Guan, J., & Wang, J. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74, 413–432.Jiménez-Sáez, F. (2005). Una Evaluación del Programa Nacional de Tecnología de Alimentos: análisis de la articulación fomentada sobre el Sistema Alimentario de Innovación en España. PhD dissertation, Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia.Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., Zofío, J. L., & Castro-Martínez, E. (2011). Evaluating research efficiency within National R&D Programmes. Research Policy, 40, 230–241.Kao, C. (2008). Efficiency analysis of university departments: An empirical study. OMEGA, 36, 653–664.Kuhlmann, S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, 26, 131–149.Laitinen, E. K. (2002). A dynamic performance measurement system: Evidence from small Finnish technology companies. Scandinavian Journal of Management, 18, 65–99.Laranja, M., Uyarra, E., & Flanagan, K. (2008). Policies for science, technology and innovation: Translating rationales into regional policies in a multi-level setting. Research Policy, 37(5), 823–835.Lee, T.-L., & von Tunzelman, N. (2005). A dynamic analytic approach to national innovation systems: The IC industry in Taiwan. Research Policy, 34, 425–440.Lipsey, R., & Carlaw, K. (1998). A structuralist assessment of technology policies: Taking Schumpeter seriously on policy. Ottawa: Industry Canada Research Publications Program.Lipsey, R., Carlaw, K., & Bekar, C. (2005). Economic transformations: General purpose technologies and long term economic growth. Oxford: Oxford University Press.Lundvall, B. Å. (1992). National systems of innovation: Toward a theory of innovation and interactive learning. London: Printer Publishers.Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31, 213–231.Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20, 443–464.Metcalfe, J. S. (2002). Equilibrium and evolutionary foundations of competition and technology policy: New perspectives on the division of labour and the innovation process. CRIC Working Papers series, University of Manchester.Miettinen, R. (1999). The riddle of things. Activity theory and actor network theory as approaches of studying innovations. Mind, Culture and Activity, 6, 170–195.Molas-Gallart, J., & Davies, A. (2006). Toward theory-led evaluation: The experience of European science, technology, and innovation policies. American Journal of Evaluation, 27, 64–82.Mytelka, L. K., & Smith, K. (2002). Policy learning and innovation theory: An interactive and co-evolving process. Research Policy, 31, 1467–1479.Olazarán, M., Lavía, C., & Otero, B. (2004). ¿Hacia una segunda transición en la ciencia? Política científica y grupos de investigación. Revista Española de Sociología, 4, 143–172.Potts, J. (2007). The innovation system & economic evolution. Productivity commission submission, public support for science & innovation, productivity commission, Camberra.Ray, S., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. American Economic Review, 87(5), 1033–1039.Rip, A., & Nederhof, A. J. (1986). Between dirigism and laissez-faire: Effects of implementing the science policy priority for biotechnology in the Netherlands. Research Policy, 15, 253–268.Schmidt, E. K., Graversen, E. K., & Langberg, K. (2003). Innovation and dynamics in public research environments in Denmark: A research-policy perspective. Science and Public Policy, 30, 107–116.Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case. Scientometrics, 81(1), 195–218.Shephard, R. (1970). Theory of cost and production functions. New Jersey: Princeton University Press.Simar, L., & Wilson, P. W. (1998). Productivity growth in industrialized countries. Discussion paper 9810, Universite Catholique de Louvain, Belgium.Van Raan, A. F. J. (2000). R&D evaluation at the beginning of the new century. Research Evaluation, 8, 81–86.Zofio, J. L. (2007). Malmquist productivity index decompositions: A unifying framework. Applied Economics, 39, 2371–2387.Zofio, J. L., & Lovell, C. A. K. (1998). Yet another Malmquist productivity index decomposition. Working paper, Department of Economics, University of Georgia, Athens, GA 30602, USA.Zofio, J. L., & Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An application to US agriculture. Applied Economics, 33(10), 1433–1442.Zofio, J. L., & Prieto, A. M. (2006). Return to dollar, generalized distance function and the Fisher productivity index. Spanish Economic Review, 8, 113–138
    corecore