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√
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reported as a function of transverse momentum, pT, for various collision centralities. A

positive value of J/ψ v3 is observed with 3.7σ significance. The measurements, compared

to those of prompt D0 mesons and charged particles at mid-rapidity, indicate an ordering

with vn(J/ψ) < vn(D0) < vn(h±) (n = 2, 3) at low and intermediate pT up to 6 GeV/c
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central collisions (5–40% and 10–50% centrality intervals) at intermediate pT between 2 and

6 GeV/c, the ratio v3/v2 of J/ψ mesons is found to be significantly lower (4.6σ) with respect
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J/ψ v2 coefficient is further studied using the Event Shape Engineering technique. The

obtained results are found to be compatible with the expected variations of the eccentricity

of the initial-state geometry.
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1 Introduction

The study of collisions of ultra-relativistic heavy ions aims to characterize the Quark-

Gluon Plasma (QGP), a strongly coupled state of matter comprising of deconfined quarks

and gluons. One of the main features of heavy-ion collisions is the anisotropic particle

flow [1, 2]. It arises from initial collision geometry anisotropies being converted by the

pressure gradients of the QGP medium to final-state particle momentum anisotropies.

The anisotropic flow is described by the coefficients vn of a Fourier series decomposition of

the azimuthal distribution of the produced particles [3]

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)], (1.1)

where ϕ is the azimuthal angle of the particle and Ψn is the n-th harmonic symmetry plane

angle. The dominant second-order flow coefficient (v2) is called elliptic flow and mostly

originates from the almond-shaped overlap area between the colliding nuclei in non-central

collisions. The third-order flow coefficient (v3) is named triangular flow and is generated

by fluctuations in the initial distribution of nucleons in the overlap region [4–8].

Heavy quarks, in particular their bound quark-antiquark states known as quarkonia,

are important probes of the QGP. Heavy-quark pairs are created prior to the formation

of the QGP through hard parton collisions and thus experience the full evolution of the

system. Measurements of the J/ψ nuclear modification factor (RAA) as a function of

centrality in Pb-Pb collisions at the LHC [9–11] are reproduced by transport [12–14] and

statistical hadronization [15, 16] models including partial to full J/ψ (re)generation by
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recombination of thermalized charm quarks. Such (re)generation component is dominant at

low transverse momentum (pT) as shown by the comparison [11, 17] of the RAA as function

of pT with transport model calculations. In the case of the statistical hadronization model,

the produced J/ψ reflects the dynamics of the charm quarks at the QGP phase boundary.

The measured pT spectra seem to support this idea [18]. Measurements of the azimuthal

anisotropies of J/ψ production in high-energy heavy-ion collisions can bring new important

insights on the charm quark dynamics.

A recent measurement of the elliptic flow of J/ψ at forward rapidity in central and semi-

central Pb-Pb collisions at the center of mass energy per nucleon pair of
√
sNN = 5.02 TeV

indicates a significant positive v2 coefficient [19]. This result is compatible with the hy-

pothesis of J/ψ production via recombination of thermalized c and c̄ quarks from the

QGP medium predominantly at low pT, but the magnitude and the transverse momentum

dependence of the v2 coefficient differ significantly from theoretical calculations [12–14].

Moreover, the v2 coefficient is found to be quite significant at high pT, in contrast with

the expectations of small azimuthal asymmetry originating mainly from path-length de-

pendent J/ψ dissociation in the medium. Furthermore, a positive J/ψ v2 coefficient at

intermediate and high pT has been observed in p-Pb collisions [20, 21], in which neither

a significant contribution from charm-quark recombination nor sizable path-length effects

are expected [22]. Recent measurements of D-meson azimuthal asymmetry in Pb-Pb colli-

sions are interpreted as collective behavior of the charm quarks at low pT and path-length

dependent charm-quark energy loss at high pT [23, 24].

Hydrodynamic calculations [25] show that vn ≈ κnεn for n = 2 and 3, where εn is the

eccentricity coefficient of the initial-state collision geometry. The parameters κn encode

the response of the QGP medium and depend on the particle type and mass as well as its

transverse momentum. At low pT, the flow coefficients of light-flavoured particles increase

with increasing pT [26, 27]. This increase of vn coefficients as a function of pT depends of

the particle mass and can be attributed to the radial expansion of the QGP medium. At

3–4 GeV/c, the flow coefficients reach a maximum. The position of the maximum, divided

by the number of constituent quarks nq, does not dependent strongly on the particle mass

as predicted by coalescence models [28]. Furthermore, the vn values at the maximum,

divided by nq, are similar for all measured light-flavoured particles, with deviations of up

to ±20% between mesons and baryons [27]. At high pT above 6–8 GeV/c, the observed

azimuthal anisotropy of the final-state particles is believed to come from path-length de-

pendent parton energy loss inside the QGP. Calculations [29] show that the corresponding

v2 and v3 coefficients exhibit approximately linear dependence on ε2 and ε3, respectively.

Nevertheless, the correlation between the flow coefficients and the initial-state eccentricities

is weaker with respect to the hydrodynamic case, especially between v3 and ε3. Interest-

ingly, the particle-mass dependence of v2 and v3 appears to be strongly reduced in the

ratio v3/v2 in semi-central collisions for light-flavored particles [27]. Whether the above

considerations also hold for heavy quarks and quarkonia is an open question whose answer

could help to understand the origin of charm quark azimuthal anisotropies and characterize

their interactions with the flowing medium.
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In the present analysis, the J/ψ v2 and v3 coefficients as well as the ratio v3/v2 as a

function of the transverse momentum and the collision centrality are measured. Wherever

possible, the data are compared to existing mid-rapidity charged-particle (predominantly

π±) and prompt D0-meson results. In addition, the dependence of the J/ψ v2 coefficient

on the initial-state conditions is studied with the Event Shape Engineering (ESE) tech-

nique [30]. Fluctuations in the initial-state energy density distribution lead to event-by-

event variations of the flow observed at a given centrality [31]. The ESE technique consists

of selecting events with the same centrality but different flow and therefore initial-state

geometry eccentricity [32, 33]. Recently, the ESE technique has been applied to the mea-

surement of mid-rapidity D-meson production in Pb-Pb collisions at
√
sNN = 5.02 TeV [34].

The obtained results indicate a correlation between the D-meson azimuthal anisotropy and

the flow of light-flavoured particles.

The J/ψ mesons are reconstructed at forward rapidity (2.5 < y < 4.0) via their µ+µ−

decay channel. The measured J/ψ mesons originate from both prompt J/ψ (direct and

from decays of higher-mass charmonium states) and non-prompt J/ψ (feed down from

b-hadron decays) production.

This letter is organized as follows. A brief description of the ALICE apparatus and the

data sample used is given in section 2. Section 3 outlines the employed analysis technique.

The evaluation of the systematic uncertainties is discussed in section 4, while the results

are reported in section 5. Finally, conclusions are presented in section 6.

2 Experimental setup and data sample

The ALICE detectors essential for the present analysis are briefly described below. A

full overview of the ALICE apparatus and its performance can be found in refs. [35, 36].

The muon spectrometer, which covers the pseudorapidity range -4 < η < -2.5, is used to

reconstruct muon tracks. The spectrometer consists of a front absorber followed by five

tracking stations. The third station is placed inside a dipole magnet. The tracking stations

are complemented by two trigger stations located downstream behind an iron wall. The

Silicon Pixel Detector (SPD) [37] is employed to reconstruct the position of the primary

vertex and to determine the flow direction. The SPD consists of two cylindrical layers

covering |η| < 2.0 and |η| < 1.4, respectively. It is placed in the central barrel of ALICE.

The central barrel is operated inside a solenoidal magnetic field parallel to the beam line.

The SPD is also used to reconstruct the so-called tracklets, track segments formed by the

clusters in the two SPD layers and the primary vertex [38]. The V0 detector [39] consists

of two arrays of 32 scintillator counters each, covering 2.8 < η < 5.1 (V0A) and -3.7 < η <

-1.7 (V0C), respectively. It provides the minimum-bias (MB) trigger and is used for event

selection and determination of collision centrality [40]. In addition, two tungsten-quartz

neutron Zero Degree Calorimeters (ZDCs), installed 112.5 meters from the interaction point

along the beam line on each side, are used for event selection.

The present analysis is based on the data sample of Pb-Pb collisions collected by ALICE

in 2015 at
√
sNN = 5.02 TeV. The trigger required coincidence of MB and dimuon triggers.

The MB trigger was provided by the V0 detector requesting signals in both V0A and
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V0C arrays. The dimuon unlike-sign trigger required at least a pair of opposite-sign track

segments in the muon trigger stations. The transverse momentum threshold of the trigger

algorithm was set such that the efficiency for muon tracks with pT = 1 GeV/c is 50%. The

sample of single muons or like-sign dimuons were collected using the same trigger algorithm,

but requiring at least one track segment or at least a pair of like-sign track segments,

respectively. The integrated luminosity of the analyzed data sample is about 225 µb−1.

The beam-induced background is filtered out offline by applying a selection based

on the V0 and the ZDC timing information [41]. The interaction pile-up is removed by

exploiting the correlations between the number of clusters in the SPD, the number of

reconstructed SPD tracklets and the total signal in the V0A and V0C detectors. The

primary vertex position is required to be within ±10 cm from the nominal interaction

point along the beam direction. The data are split in intervals of collision centrality, which

is obtained based on the total signal in the V0A and V0C detectors [40].

The muon selection is identical to that used in ref. [20]. The dimuons are reconstructed

in the acceptance of the muon spectrometer (2.5 < y < 4.0) and are required to have a

transverse momentum between 0 and 12 GeV/c.

3 Analysis

The flow coefficients vn of the selected dimuons are measured using the scalar product (SP)

method [2, 42], in which they are calculated from the expression

vn{SP} =
〈〈unQ

SPD∗
n 〉〉
Rn

,

Rn =

√
〈QSPD

n QV0A∗
n 〉〈QSPD

n QV0C∗
n 〉

〈QV0A
n QV0C∗

n 〉
,

(3.1)

where un = exp(inϕ) is the unit flow vector of the dimuon, QSPD
n , QV0A

n and QV0C
n are the

event flow vectors measured in the SPD, V0A and V0C detectors, respectively, and n is the

harmonic number. The brackets 〈· · · 〉 denote an average over all events, the double brackets

〈〈· · · 〉〉 an average over all particles in all events, and ∗ the complex conjugate. The SPD

event flow vector QSPD
n is calculated from the azimuthal distribution of the reconstructed

SPD tracklets. The V0A and V0C event flow vectors QV0A
n and QV0C

n are calculated from

the azimuthal distribution of the signal in the V0 detector. The components of all three

event flow vectors are corrected for non-uniform detector acceptance and efficiency using

a recentering procedure (i.e. by subtracting of the Qn-vector averaged over many events

from the Qn-vector of each event) [43]. The denominator Rn in the above equation is called

resolution and is obtained as a function of collision centrality. The gap in pseudorapidity

between un and QSPD
n (|∆η| > 1.0) suppresses short-range correlations (“non-flow”), which

are unrelated to the azimuthal asymmetry in the initial geometry and come from jets and

resonance decays [19]. In the following, the vn{SP} coefficients are denoted as vn.

The J/ψ flow coefficients are extracted by a fit of the superposition of the J/ψ signal

and the background to the dimuon flow coefficients as a function of the dimuon invariant
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mass [44]

vn(Mµµ) =
NJ/ψ

NJ/ψ +NB
+−

vJ/ψn +
NB

+−
NJ/ψ +NB

+−
vBn (Mµµ), (3.2)

where v
J/ψ
n is the flow coefficient of the signal and vBn is the Mµµ-dependent flow coefficient

of the background. The NJ/ψ and NB
+− are the signal and the background dimuon yields,

respectively, as a function of Mµµ. They are obtained by fitting the Mµµ distribution with

a mixture of an extended Crystal Ball (CB2) function for the J/ψ signal and a Variable-

Width Gaussian (VWG) function for the background [45]. The J/ψ peak position and width

are left free, while the CB2 tail parameters are fixed to the values reported in ref. [46].

The statistical uncertainties of NJ/ψ and NB
+− are not considered in the fit of vn(Mµµ),

given their negligible contribution to the statistical uncertainty of the v
J/ψ
n coefficient. The

ψ(2S) signal is not included in the fit of vn(Mµµ) because of its extremely low significance

in central and semi-central collisions.

In previous measurements [19, 20], the Mµµ dependence of the background flow coef-

ficients was parameterized by an arbitrary function. This approach leads to an increase

of the statistical uncertainty of the J/ψ flow coefficients, because the parameters of the

function are not fixed. Moreover, an additional systematic uncertainty arises from the

fact that the functional form of the background distribution is unknown. In the present

analysis, we adopt a different approach. It is known that, in collisions of heavy ions, the

dimuon background in the vicinity of the J/ψ is mostly combinatorial and can be described

satisfactorily with the event-mixing technique [9, 17]. This technique consists in forming

dimuons by combining muons from two different events having similar collision centrality.

The flow coefficients of the combinatorial background are fully determined by the flow coef-

ficients of the single muons from which the background dimuons are formed. One can show

that for any given kinematical configuration of the background dimuon, its flow coefficients

can be expressed as

vBn (Mµµ) =
〈v(1)n (p

(1)
T , η1) cos[n(ϕ1 − ϕ)] + v

(2)
n (p

(2)
T , η2) cos[n(ϕ2 − ϕ)]〉Mµµ

〈1 + 2
∞∑

m=1
v
(1)
m (p

(1)
T , η1)v

(2)
m (p

(2)
T , η2) cos[m(ϕ1 − ϕ2)]〉Mµµ

, (3.3)

where v
(1)
n (p

(1)
T , η1) and v

(2)
n (p

(2)
T , η2) are the flow coefficients of the two muons as a function

of their transverse momenta and pseudorapidities, ϕ1 and ϕ2 are the azimuthal angles of

the two muons and ϕ is the azimuthal angle of the dimuon. The brackets 〈· · · 〉Mµµ denote

an average over all dimuons (p
(1)
T , p

(2)
T , η1, η2, ϕ1, ϕ2) that belong to any given Mµµ

interval. The details on the derivation of eq. (3.3) are given in appendix A. In case of the

event mixing, the numerator in eq. (3.3) is calculated as

〈u
(1)
n Q

(1),SPD
n

R
(1)
n

cos(n(ϕ1 − ϕ)) +
u
(2)
n Q

(2),SPD
n

R
(2)
n

cos(n(ϕ2 − ϕ))
〉
Mµµ

, (3.4)

where u
(1)
n and u

(2)
n are the unit vector of the two muons, Q

(1)
n and Q

(2)
n are the SPD flow

vectors for the events containing the two muons, and R
(1)
n and R

(2)
n are their resolutions.
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The brackets 〈· · · 〉Mµµ denote an average over all mixed-event dimuons belonging to any

given Mµµ interval. The denominator in eq. (3.3) reflects the modification of the dimuon

yield due to the flow of single muons. Since the event flow vectors of the two mixed events

are not correlated, the mixed-event dimuon yield is not modified by the single muon flow.

Thus, the denominator is obtained directly as the ratio NB
+−/N

mix
+− , where Nmix

+− is the

number of mixed-event unlike-sign dimuons as a function of Mµµ. The ratio is calculated

after a proper normalization of Nmix
+− using the like-sign dimuons from the same and mixed

events. The normalization factor is obtained as [17]

∫
Mµµ

Nmix
+−

√
Nsame

++ Nsame
−−

Nmix
++ Nmix

−−
dMµµ∫

Mµµ

Nmix
+− dMµµ

, (3.5)

where N same
++ (N same

−− ) and Nmix
++ (Nmix

−− ) are the numbers of like-sign (positive and negative

charges) same-event and mixed-event dimuons, respectively. The integral is calculated in

the invariant mass interval between 2.2 and 4.5 GeV/c2. Assuming a purely combinatorial

background, the vBn (Mµµ) coefficient, obtained with the event-mixing procedure described

above, is used directly in order to fix the background term of the fit from eq. (3.2). All the

analysis steps discussed in this section are performed separately in each considered dimuon

transverse momentum and centrality interval. The event mixing and the normalization of

Nmix
+− are done in 5%-wide collision centrality intervals.

Examples of the Mµµ fit and the mixed-event distribution Nmix
+− as a function of Mµµ

in several centrality and pT intervals are shown in figure 1. At low and intermediate pT,

the mixed-event distribution describes the dimuon background on a percent level with a

residual difference presumably originating from the single muon flow. However, at high pT,

this difference becomes much larger (up to ≈ 35% in the vicinity of the J/ψ mass in 8 <

pT < 12 GeV/c and 30–50% centrality interval) and goes beyond a possible single muon

flow contribution. This points to the presence of a correlated dimuon background. Such

a background is believed to originate from production of heavy-flavor quark pairs and to

become significant in semi-central and peripheral collisions at high pT [47, 48].

Examples of the v2(Mµµ) fit based on the analysis approach described above are pre-

sented in figure 2. As can be seen, the fit performs quite satisfactorily, with the mixed-event

v2 coefficient being able to describe the shape and amplitude of the background v2 in the

entire considered invariant mass interval from 1.5 to 4.5 GeV/c2. This is not surprising

at low and intermediate pT, where the mixed-event dimuon distribution describes rather

precisely the background dimuon distribution (top and middle panels in figures 1 and 2).

Remarkably, however, the mixed-event approach performs satisfactorily also at high pT
in semi-central collisions, where the contribution of the correlated background is signifi-

cant (bottom right panels in figures 1 and 2). Given that the denominator in eq. (3.3)

is obtained as the ratio NB
+−/N

mix
+− , this means that the flow coefficient of the correlated

background is significantly lower than that of the combinatorial one. The systematic effect

arising from the presence of the correlated background and the corresponding uncertainties

are discussed in section 4. The approach described above performs equally well also in case
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collisions. The data are fitted to a combination of an extended Crystal Ball (CB2) function for

the signal and a Variable-Width Gaussian (VWG) function for the background. The distributions

are compared to the ones obtained with the event-mixing technique (see text for details). Only
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collisions. The data are fitted with the function from eq. 3.2, where the background coefficient

vB2 (Mµµ) is fixed using the event-mixing procedure. The background coefficient vB2 (Mµµ) alone

down to 1.5 GeV/c2 is also presented. Only statistical uncertainties are shown.
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Figure 3. (Color online) The v2(Mµµ) (left panel) and v3(Mµµ) (right panel) distributions in

the 0–50% centrality and 0 < pT < 12 GeV/c. The distributions are fitted with the function

from eq. 3.2, where the background coefficients vB2 (Mµµ) and vB3 (Mµµ) are fixed using the event-

mixing procedure. The background coefficients alone down to 1.5 GeV/c2 are also presented. Only

statistical uncertainties are shown.

of the v3 coefficient. This is illustrated in figure 3, where the fits of the centrality and

pT-integrated v2(Mµµ) and v3(Mµµ) distributions are compared.

The Event Shape Engineering (ESE) technique is performed following the procedure

described in ref. [33]. It is based on the magnitude of the second-order reduced V0A event

flow vector defined as in ref. [42]

qV0A
2 =

|QV0A
2 |√
SV0A

, (3.6)

where |QV0A
2 | is the magnitude of the second-order V0A event flow vector and SV0A is

the total signal in the V0A detector. The large pseudorapidity gap between the V0A

and the muon spectrometer (|∆η| > 5.3) greatly suppresses the non-flow contribution and

guarantees a proper event-shape selection. Two event-shape classes with the lowest and

highest qV0A
2 values corresponding to the 0–20% and 80–100% intervals, respectively, are

investigated for the 5–40% centrality interval.

4 Systematic uncertainties

The systematic effect related to the presence of correlated background is checked by modi-

fying the definition of the background coefficient vB2 (Mµµ). The ratio NB
+−/N

mix
+− is replaced

by NB
+−/(N

mix
+− + α(NB

+− −Nmix
+− )), where the parameter α represents the strength of the

flow of the correlated background. The value of 0 corresponds to the default approach (e.g.

assuming negligible flow of the correlated background), while the value of 1 corresponds to

the assumption that the correlated background has the same flow coefficient as compared to

the combinatorial background. The parameter α is left free in the fit of eq. (3.2) and the dif-

ferences in the resulting J/ψ v2 with respect to the default approach are taken as systematic

uncertainties. As expected, in central (0–10%) collisions and at low transverse momentum,
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the uncertainties are practically negligible. In semi-central (30–50% centrality interval) col-

lisions and in the highest considered transverse momentum interval (8 < pT < 12 GeV/c),

the uncertainty of the J/ψ v2 reaches 0.013. The parameter α is found to be well below 1

in all centrality and pT intervals. The corresponding systematic uncertainty of the J/ψ v3
coefficient is in general significantly smaller. No clear pattern is found as a function of col-

lision centrality and pT. Conservatively, the parameter α is fixed to 1 and the difference in

the results with respect to the ones obtained with default value of 0 is taken as systematic

uncertainty. It is worth noting that even though the fraction of correlated background at

high pT in semi-central collisions is significant, its effect on the J/ψ flow coefficients is sup-

pressed by the high signal-to-background ratio NJ/ψ/NB
+−. As described in appendix A, a

small additional v
(1)
2 v

(2)
4 +v

(2)
2 v

(1)
4 term is present in vB2 . Its estimated contribution is added

to the fit to the v2(Mµµ) distribution and the change in the J/ψ v2 results with respect to

the default approach is taken as systematic uncertainty. These uncertainties are found to

be sizable only in 0 < pT < 2 GeV/c and 10–50% centrality interval, where they reach 0.002.

The systematic uncertainty related to the signal-to-background ratio NJ/ψ/NB
+− in

eq. (3.2) is estimated by varying the signal tails (e.g. the parameters describing the tails of

the CB2 function, employed to fit the signal peak), the background fit functions and the

fit range [19, 20]. The obtained uncertainties are up to 0.001.

The effect of any residual non-uniform detector acceptance and efficiency in the calcu-

lation of the SPD event flow vector is checked via the imaginary part of the scalar product

defined in eq. (3.1) [49]. No systematic uncertainty is assigned as the terms are consistent

with zero within statistical uncertainties. The resolution of the SPD event flow vector is

calculated from the events containing at least one selected dimuon by default. Alterna-

tively, it is calculated from all events recorded with the MB trigger and passing the offline

event selection, as well as from the events containing at least one selected single muon. Dif-

ferences up to 1% and 2% with respect to the default approach are observed for R2 and R3,

respectively, and are taken as systematic uncertainties. For the event-shape classes, a bias

can arise from auto-correlations due to the usage of the V0A event flow vector for both q2
and R2. This potential bias is assessed by replacing the ratio 〈QSPD

n QV0A∗
n 〉/〈QV0A

n QV0C∗
n 〉

in eq. 3.1 with the one from the unbiased data sample. The resulting effect is smaller than

1% and is neglected.

The muon spectrometer occupancy affects the reconstruction efficiency and thus can

bias (lower) the measured vn coefficients. The reconstruction efficiency as a function of

centrality is taken from ref. [11], where it is obtained by embedding simulated J/ψ → µ+µ−

decays into real Pb-Pb events. It is found to decrease linearly with the signal in the V0C

detector SV0C, which largely covers the geometrical acceptance of the muon spectrometer.

Thus, the systematic deviations of the J/ψ vn are calculated as the product of the single

muon vn, the first derivative of the reconstruction efficiency with respect to SV0C and

the mean 〈SV0C〉 in the considered centrality interval. The single muon vn coefficients

are obtained with the same SP approach as the one employed for J/ψ. Conservatively,

the maximum of the single muon vn as a function of pT is used. The typical values of

these systematic deviations are found to be up to 0.0025 and 0.0015 for the J/ψ v2 and
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Figure 4. (Color online) The J/ψ v2 (upper panels) and v3 (bottom panels) coefficients as

a function of pT in three centrality intervals (from left to right) in Pb-Pb collisions at
√
sNN

= 5.02 TeV. The results are compared to the v2 and v3 coefficients of mid-rapidity charged

particles [50] and prompt D0 mesons [23]. Statistical and systematic uncertainties are shown as

bars and boxes, respectively. The shaded bands represent the systematic uncertainties from the

contribution of non-prompt D0 mesons.

v3, respectively. Given the small magnitude of the effect, we do not correct the measured

coefficients, but take the above deviations as systematic uncertainties.

5 Results

Figure 4 shows the measured J/ψ v2 and v3 coefficients as a function of the transverse

momentum for three centrality intervals. The results are compared to the v2 and v3 coeffi-

cients of charged particles [50] and prompt D0 mesons [23] at mid-rapidity obtained with

the SP method and a pseudo-rapidity gap |∆η| > 2.0 between the particle of interest and

the kinematic interval of the event flow vector calculation. At low and intermediate pT, up

to 6 GeV/c, one can observe a clear ordering with vn(J/ψ) < vn(D0) < vn(h±) (n = 2, 3).

At high pT, above 6–8 GeV/c, the v2 results indicate a convergence between charged par-

ticles, prompt D0 mesons and J/ψ. Such an observation suggests that, at high pT, the

azimuthal asymmetry of the J/ψ mesons as well as that of charged particles and prompt

D0 mesons is possibly governed by in-medium path-length dependent energy-loss effects.

Discussing the above observations, should be noted the different rapidity interval of

the J/ψ measurement. The effect of the decorrelation of the symmetry plane angles Ψn

(n = 2, 3) between mid and forward pseudorapidity has been estimated to be less than 1%

and 3% for v2 and v3, respectively [51, 52]. An η dependence of the pT-integrated vn coeffi-

cients for charged particles has been observed in Pb-Pb collisions at
√
sNN = 2.76 TeV [53].

However, the ratio v3/v2 has shown no significant dependence on η. Furthermore, the

pT-differential v2 was found to be independent of η (up to |η| < 2.4) [54], thus indicating
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in Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties are shown as bars

and boxes, respectively.
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Figure 6. (Color online) The J/ψ v3/v2 ratio as a function of pT in the 5–40% (left panel) and

10–50% (right panel) centrality intervals in Pb-Pb collisions at
√
sNN = 5.02 TeV. The results are

compared to those of mid-rapidity charged particles [50] and prompt D0 mesons [23]. Statistical

and systematic uncertainties are shown as bars and boxes, respectively. The shaded bands represent

the systematic uncertainties from the contribution of non-prompt D0 mesons.

that the η dependence of the pT-integrated v2 arises mainly from changes in the transverse

momentum spectra.

The presented results are for inclusive J/ψ and therefore the comparison to D0-meson

results can be influenced by the considerable fraction of non-prompt J/ψ from b-hadron

decays at intermediate and high transverse momentum [55, 56]. Finally, the J/ψ v2 at

intermediate and high transverse momentum can contain an additional contribution arising

from a strong magnetic field at the initial stages of the collision, as suggested in ref. [57].

The present analysis of the J/ψ v2 coefficient, performed in the centrality intervals

used in ref. [19], yields consistent results. The main improvement with respect to the
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measurement in ref. [19] is the up to 15% reduction of the statistical uncertainties due to

the event-mixing approach described in section 3.

In figure 4, the J/ψ v3 is positive in most of the intervals, although it is also compatible

with zero given the large uncertainties. A positive value of v3 is found integrating the data

over the centrality intervals, as seen in figure 5. The Fisher’s combined probability test [58]

is used to quantify the probability that J/ψ v3 is zero. The data in all pT intervals are

treated as independent measurements. The statistical and systematic uncertainties are

added in quadrature. The total combined probability of the zero hypothesis is found to be

1.23×10−4, which corresponds to about 3.7σ significance of the measured positive J/ψ v3
coefficient.

The flow coefficients of the J/ψ, prompt D0 mesons and charged particles are further

compared in figure 6, where the ratio v3/v2 is shown as a function of pT. In order to

increase the significance of the ratio, the central collisions (0–5% and 0–10% centrality

intervals), where v2 has small magnitude, are excluded. The uncertainties of v2 and v3
coefficients are considered uncorrelated due to the weak correlation between the Ψ2 and

Ψ3 angles [59]. Taking into account all pT intervals, the obtained J/ψ v3/v2 ratio is found

to be significantly lower (4.6σ) with respect to that of charged particles. Moreover, at

intermediate pT between 2 and 6 GeV/c, the prompt D0-mesons v3/v2 ratio is 2.3σ below

that of charged particles and 3.4σ above that of the J/ψ mesons. Thus, the data seem to

suggest an ordering similar to the one observed for the v2 and v3 coefficients in semi-central

collisions. It is interesting to note that, in contrast, the mass ordering of v2 and v3 seen

for light-flavored particles is strongly suppressed in the ratio v3/v2 [27].

The left panel of figure 7 presents the J/ψ v2 as a function of pT for event-shape selected

and unbiased events in the 5–40% centrality interval. The systematic uncertainties of the

results from the event-shape selected and unbiased events are considered fully correlated

and therefore cancel out in the ratios shown in the right panel of figure 7. The values of

the J/ψ v2 coefficient in low (high) qV0A
2 event classes are found to be lower (higher) with

respect to those in the unbiased events. The v2 coefficient of single muons is also measured

in the same event-shape selected and unbiased samples. The corresponding ratios between

the results in the event-shape selected and unbiased events show no pT dependence up

to 10 GeV/c (figure 7, right panel). This behavior demonstrates that the applied ESE

technique based on qV0A
2 allows the selection of a global property of the collisions, most

likely linked to the eccentricity ε2 of the initial-state geometry [33]. The mean values of the

ratios for single muons v2{low-qV0A
2 }/v2{unbiased} and v2{high-qV0A

2 }/v2{unbiased} are

estimated from a fit with constant and are found to be 0.87 and 1.15, respectively. These

values reflect the sensitivity of the V0A-based event-shape selection. The corresponding

mean values of the J/ψ ratios, 0.79±0.14 and 1.35±0.14, are consistent with the muon

ratios. This implies that the J/ψ v2 results are compatible with the expected variations of

the eccentricity of the initial-state geometry within the uncertainties.
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Figure 7. (Color online) Left: the J/ψ v2 as a function of pT for shape selected and unbiased

samples in the 5–40% centrality interval in Pb-Pb collisions at
√
sNN = 5.02 TeV. Points are slightly

shifted along the horizontal axis for better visibility. Statistical and systematic uncertainties are

shown as bars and boxes, respectively. Right: ratio of the J/ψ v2 in lowest and highest qV0A
2 event-

shape classes and the unbiased sample. The shaded bands represent the result with a constant

function ±1σ. The J/ψ results are compared to the ratios for the single muons v2 obtained with

the same event-shape classes.

6 Conclusions

In summary, the elliptic and triangular flow coefficients of inclusive J/ψ mesons at forward

rapidity have been measured in Pb-Pb collisions at
√
sNN = 5.02 TeV over a broad range

of transverse momentum and in various centrality intervals. This is the first measurement

of the v3 coefficient for inclusive J/ψ production, indicating a positive value with 3.7σ

significance for 0 < pT < 12 GeV/c.

The obtained inclusive J/ψ v2 and v3 coefficients as well as the ratio v3/v2 are compared

to the results for charged particles and prompt D0 mesons at mid-rapidity. At low and

intermediate pT, the v2 and v3 results exhibit an ordering with the charged particles having

largest values, followed by the prompt D0 mesons and finally the J/ψ having the smallest

values. In semi-central collisions at intermediate pT, the J/ψ v3/v2 ratio is found to be

significantly lower compared to that of charged particles. Despite the large uncertainties,

the values of the prompt D0 ratio are somewhat lower than the charged particles and higher

than the J/ψ mesons, hinting at a possible ordering similar to that observed for the v2 and

v3 coefficients.

At high pT, the v2 of the charged particles, the prompt D0 mesons and the J/ψ seem

to converge to similar values. The uncertainties of the v3 coefficients do not allow one to

draw firm conclusions about their convergence, although the centrality- and pT-integrated

J/ψ v3 is compatible with that of high-pT charged particles.

The analysis using Event Shape Engineering technique shows that the J/ψ v2 coeffi-

cients increase (decrease) for classes of events with high (low) reduced event flow vector.
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Compared to single muons reconstructed in the same rapidity interval, the J/ψ results

are found compatible with the expected variations of the eccentricity of the initial-state

geometry.
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A Flow coefficients of combinatorial background

The azimuthal distribution of the combinatorial background dNB/dϕ is a product of the

azimuthal distributions of the single muons from which the background dimuons are formed.

Thus, using eq. (1.1) one obtains

dNB

dϕ
∝

(
1+2

∞∑
n=1

v(1)n (p
(1)
T ,η1)cos[n(ϕ1−Ψn)]

)(
1+2

∞∑
m=1

v(2)m (p
(2)
T ,η2)cos[m(ϕ2−Ψm)]

)

∝ 1+2

∞∑
n=1

v(1)n (p
(1)
T ,η1)cos[n(∆ϕ1+ϕ−Ψn)]

+2
∞∑

m=1

v(2)m (p
(2)
T ,η2)cos[m(∆ϕ2+ϕ−Ψm)] (A.1)

+4

∞∑
n=1

∞∑
m=1

v(1)n (p
(1)
T ,η1)v

(2)
m (p

(2)
T ,η2)cos[n(∆ϕ1+ϕ−Ψn)]cos[m(∆ϕ2+ϕ−Ψm)],

where v
(1)
n (p

(1)
T , η1) and v

(2)
m (p

(2)
T , η2) are the flow coefficients of the two muons as a function

of their transverse momenta and pseudorapidities, ϕ1 and ϕ2 are the azimuthal angles of

the two muons, ϕ is the azimuthal angle of the dimuon and ∆ϕ1,2 = ϕ1,2 − ϕ.
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The n-th order flow coefficient of the background dimuon is then calculated as

vBn (p
(1)
T , p

(2)
T , η1, η2, ϕ1, ϕ2) = 〈cos[n(ϕ−Ψn)]〉 =

2π∫
0

dNB

dϕ cos[n(ϕ−Ψn)]dϕ

2π∫
0

dNB

dϕ dϕ

. (A.2)

The denominator in eq. (A.2) is obtained as

2π + 2

∞∑
n=1

v(1)n (p
(1)
T , η1)In(∆ϕ1) + 2

∞∑
m=1

v(2)m (p
(2)
T , η2)Im(∆ϕ2)

+ 4

∞∑
n=1

∞∑
m=1

v(1)n (p
(1)
T , η1)v

(2)
m (p

(2)
T , η2)Inm(∆ϕ1,∆ϕ2),

(A.3)

where

In(∆ϕ1,2) =

2π∫
0

cos[n(∆ϕ1,2 + ϕ−Ψn)]dϕ = 0, (A.4)

Imn(∆ϕ1,∆ϕ2) =

2π∫
0

cos[n(∆ϕ1 + ϕ−Ψn)] cos[m(∆ϕ2 + ϕ−Ψm)]dϕ

=

{
0, n 6= m

π cos[n(∆ϕ1 −∆ϕ2)], n = m.
(A.5)

The numerator in eq. (A.2) is obtained as

2
∞∑
k=1

v
(1)
k (p

(1)
T , η1)Jkn(∆ϕ1) + 2

∞∑
m=1

v(2)m (p
(2)
T , η2)Jmn(∆ϕ2)

+ 4
∞∑
k=1

∞∑
m=1

v
(1)
k (p

(1)
T , η1)v

(2)
m (p

(2)
T , η2)Jkmn(∆ϕ1,∆ϕ2),

(A.6)

where

Jkn(∆ϕ1,2) =

2π∫
0

cos[k(∆ϕ1,2 + ϕ−Ψk)] cos[n(ϕ−Ψn)]dϕ

=

{
0, k 6= n

π cos[n∆ϕ1,2], k = n,
(A.7)

Jkmn(∆ϕ1,∆ϕ2) =

2π∫
0

cos[k(∆ϕ1 + ϕ−Ψk)] cos[m(∆ϕ2 + ϕ−Ψm)]

× cos[n(ϕ−Ψn)]dϕ = 0. (A.8)

– 17 –
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Combining eq. (A.2)–(A.8) yields

vBn (p
(1)
T , p

(2)
T , η1, η2, ϕ1, ϕ2) =

v
(1)
n (p

(1)
T , η1) cos[n(ϕ1 − ϕ)] + v

(2)
n (p

(2)
T , η2) cos[n(ϕ2 − ϕ)]

1 + 2
∞∑

m=1
v
(1)
m (p

(1)
T , η1)v

(2)
m (p

(2)
T , η2) cos[m(ϕ1 − ϕ2)]

.

(A.9)

Finally, the vBn as a function of Mµµ is obtained by averaging the numerator and

denominator in eq. (A.9) over all dimuons, which belong to a given Mµµ interval:

vBn (Mµµ) =
〈v(1)n (p

(1)
T , η1) cos[n(ϕ1 − ϕ)] + v

(2)
n (p

(2)
T , η2) cos[n(ϕ2 − ϕ)]〉Mµµ

〈1 + 2
∞∑

m=1
v
(1)
m (p

(1)
T , η1)v

(2)
m (p

(2)
T , η2) cos[m(ϕ1 − ϕ2)]〉Mµµ

. (A.10)

The eq. (A.8) is derived assuming no correlation between different harmonic symmetry

plane angles Ψ. While this is in general the case, there are some noticeable exceptions [59].

In fact, the significant correlation between the Ψ2 and Ψ4 angles leads to non-zero J422. The

corresponding contribution to the numerator of eq. (A.10) for vB2 is given approximately by

1

2
〈cos[4(Ψ4 −Ψ2)]〉〈v(1)4 (p

(1)
T , η1)v

(2)
2 (p

(2)
T , η2) cos[4(ϕ1 − ϕ)− 2(ϕ2 − ϕ)]

+ v
(2)
4 (p

(2)
T , η2)v

(1)
2 (p

(1)
T , η1) cos[4(ϕ2 − ϕ)− 2(ϕ1 − ϕ)]〉Mµµ ,

(A.11)

where the brackets 〈· · · 〉 denote an average over all events. The contribution is estimated

as described in the following. First, the v2 and v4 coefficients of single muons are measured

with the SP method, averaged over pseudorapidity and parameterized as a function of pT.

The obtained parameterizations v2,4(pT) are then combined with opposite-sign dimuons

(p
(1)
T , p

(2)
T , η1, η2, ϕ1, ϕ2) in the data outside the J/ψ mass peak. The values of 〈cos[4(Ψ4 −

Ψ2)]〉, which ranges from 0 in central collisions to about 0.8 in peripheral collisions, are

taken from ref. [59]. Finally, the magnitude of the effect is calculated via interpolation of

the results at the J/ψ mass peak. In general, the magnitude is found to be at the order of

10−4, reaching at most 7× 10−4 for 0 < pT < 2 GeV/c and the 30–50% centrality interval.

A similar effect is present in the numerator of eq. (A.10) for vB3 , due to the correlation

of the Ψ3 and Ψ6 angles. In practice, however, this contribution can be certainly neglected,

because of the small magnitude of the v6 coefficient.
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M. Šefč́ık38, J.E. Seger16, Y. Sekiguchi130, D. Sekihata45, I. Selyuzhenkov91,104, S. Senyukov134,

E. Serradilla72, P. Sett48, A. Sevcenco68, A. Shabanov62, A. Shabetai113, R. Shahoyan34,

W. Shaikh107, A. Shangaraev90, A. Sharma98, A. Sharma99, M. Sharma99, N. Sharma98,

A.I. Sheikh139, K. Shigaki45, M. Shimomura82, S. Shirinkin64, Q. Shou6,110, Y. Sibiriak87,

S. Siddhanta54, K.M. Sielewicz34, T. Siemiarczuk84, D. Silvermyr80, G. Simatovic89,

G. Simonetti34,103, R. Singaraju139, R. Singh85, R. Singh99, V. Singhal139, T. Sinha107, B. Sitar14,

– 25 –



J
H
E
P
0
2
(
2
0
1
9
)
0
1
2

M. Sitta32, T.B. Skaali21, M. Slupecki126, N. Smirnov144, R.J.M. Snellings63, T.W. Snellman126,

J. Sochan115, C. Soncco109, J. Song18, A. Songmoolnak114, F. Soramel29, S. Sorensen128,

F. Sozzi104, I. Sputowska117, J. Stachel102, I. Stan68, P. Stankus94, E. Stenlund80, D. Stocco113,

M.M. Storetvedt36, P. Strmen14, A.A.P. Suaide120, T. Sugitate45, C. Suire61, M. Suleymanov15,
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– 28 –



J
H
E
P
0
2
(
2
0
1
9
)
0
1
2

102 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
103 Physik Department, Technische Universität München, Munich, Germany
104 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für

Schwerionenforschung GmbH, Darmstadt, Germany
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