1,449 research outputs found

    Antitrust Laws in National Emergency

    Get PDF

    Canonical Generations and the British Left: The Narrative Construction of the Miners’ Strike 1984–85

    Get PDF
    ‘Generations’ have been invoked to describe a variety of social and cultural relationships, and to understand the development of self-conscious group identity. Equally, the term can be an applied label and politically useful construct; generations can be retrospectively produced. Drawing on the concept of ‘canonical generations’ – those whose experiences come to epitomise an event of historic and symbolic importance – this article examines the narrative creation and functions of ‘generations’ as collective memory shapes and re-shapes the desire for social change. Building a case study of the canonical role of the miners’ strike of 1984–85 in the narrative history of the British left, it examines the selective appropriation and transmission of the past in the development of political consciousness. It foregrounds the autobiographical narratives of activists who, in examining and legitimising their own actions and prospects, (re)produce a ‘generation’ in order to create a relatable and useful historical understanding

    Bile acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia

    Get PDF
    Esophageal adenocarcinoma (EAC) arises from Barrett esophagus (BE), intestinal-like columnar metaplasia linked to reflux esophagitis. In a transgenic mouse model of BE, esophageal overexpression of interleukin-1β phenocopies human pathology with evolution of esophagitis, Barrett-like metaplasia and EAC. Histopathology and gene signatures closely resembled human BE, with upregulation of TFF2, Bmp4, Cdx2, Notch1, and IL-6. The development of BE and EAC was accelerated by exposure to bile acids and/or nitrosamines, and inhibited by IL-6 deficiency. Lgr5+ gastric cardia stem cells present in BE were able to lineage trace the early BE lesion. Our data suggest that BE and EAC arise from gastric progenitors due to a tumor-promoting IL-1β-IL-6 signaling cascade and Dll1-dependent Notch signaling. © 2012 Elsevier Inc

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat The Diffraction Limit

    Full text link
    Classical, interferometric, optical lithography is diffraction limited to writing features of a size lambda/2 or greater, where lambda is the optical wavelength. Using nonclassical photon number states, entangled N at a time, we show that it is possible to write features of minimum size lambda/(2N) in an N-photon absorbing substrate. This result surpasses the usual classical diffraction limit by a factor of N. Since the number of features that can be etched on a two-dimensional surface scales inversely as the square of the feature size, this allows one to write a factor of N^2 more elements on a semiconductor chip. A factor of N = 2 can be achieved easily with entangled photon pairs generated from optical parametric downconversion. It is shown how to write arbitrary 2D patterns by using this method.Comment: 9 pages, 2 figure

    Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+

    Full text link
    We report a search for the decays B0→Ds−Ds+B^{0} \to D_{s}^{-} D_{s}^{+}, B0→Ds∗−Ds+B^{0} \to D_{s}^{*-} D_{s}^{+}, B0→Ds∗−Ds∗+B^{0} \to D_{s}^{*-} D_{s}^{*+} in a sample of 232 million Υ(4S)\Upsilon(4S) decays to \BBb ~pairs collected with the \babar detector at the PEP-II asymmetric-energy e+e−e^+ e^- storage ring. We find no significant signal and set upper bounds for the branching fractions: B(B0→Ds−Ds+)<1.0×10−4,B(B0→Ds∗−Ds+)<1.3×10−4{\cal B}(B^{0} \to D_{s}^{-} D_{s}^{+}) < 1.0 \times 10^{-4}, {\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{+}) < 1.3 \times 10^{-4} and B(B0→Ds∗−Ds∗+)<2.4×10−4{\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{*+}) < 2.4 \times 10^{-4} at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics

    Get PDF
    With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays to ppbar. We measure a branching fraction Br(B+ --> p pbar K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ --> Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process B→Kℓ+ℓ−B\to K\ell^+\ell^-, where ℓ+ℓ−\ell^+\ell^- is either an e+e−e^+e^- or μ+μ−\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)→BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+e−e^+e^- storage ring. Averaging over K(∗)K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(B→Kℓ+ℓ−)=(0.65−0.13+0.14±0.04)×10−6{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(B→K∗ℓ+ℓ−)=(0.88−0.29+0.33±0.10)×10−6{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the B→Kℓ+ℓ−B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
    • …
    corecore