895 research outputs found

    Micromechanics of metal matrix composites using the Generalized Method of Cells model (GMC) user's guide

    Get PDF
    A user's guide for the program gmc.f is presented. The program is based on the generalized method of cells model (GMC) which is capable via a micromechanical analysis, of predicting the overall, inelastic behavior of unidirectional, multi-phase composites from the knowledge of the properties of the viscoplastic constituents. In particular, the program is sufficiently general to predict the response of unidirectional composites having variable fiber shapes and arrays

    Transient response of piezoelectric composites caused by the sudden formation of localized defects

    Get PDF
    AbstractA continuum model is presented which is capable of generating the transient electroelastic field in piezoelectric composites of periodic microstructure, caused by the sudden appearance of localized defects. These defects are simulated by associating to every one of the ten piezoelectric parameters of the constituents a distinct damage variable. This procedure enables the modeling of localized cracks, soft and stiff inclusions and cavities. As a result, the constitutive equations of the piezoelectric phases appear in a specific form that includes eigen-electromechanical field variables which represent these defects. The method of solution is based on the combination of two distinct approach. In the first one, the representative cell method is employed according to which the periodic composite, which is discretized into several cells, is reduced to a problem of a single cell in the discrete Fourier transform domain. The resulting coupled elastodynamic and electric equations, initial, boundary and interfacial conditions in the transform domain are solved by employing a wave propagation in piezoelectric composite analysis which forms the second approach. The method of solution is verified by comparison with an analytical solution for the transient response of a piezoelectric material with a semi-infinite mode III-crack. Several applications are presented for the sudden formation of cracks in homogeneous and layered piezoelectric materials which are subjected to various types of electromechanical loading, and for the sudden appearance of a cavity. The effect of electromechanical coupling on the dynamic response is discussed

    Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites

    Get PDF
    The micromechanical generalized method of cells model is employed for the prediction of the effective elastic, piezoelectric, dielectric, pyroelectric and thermal-expansion constants of multiphase composites with embedded piezoelectric materials. The predicted effective constants are compared with other micromechanical methods available in the literature and good agreements are obtained

    Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    Get PDF
    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases

    A new and general formulation of the parametric HFGMC micromechanical method for two and three-dimensional multi-phase composites

    Get PDF
    AbstractThe recent two-dimensional (2D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2D parametric and orthogonal HFGMC are special cases of the present 3D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, and discontinuous aligned short fiber. A 3D repeating unit-cell for foam material composite is simulated

    Nonlinear micromechanical formulation of the high fidelity generalized method of cells

    Get PDF
    AbstractThe recent High Fidelity Generalized Method of Cells (HFGMC) micromechnical modeling framework of multiphase composites is formulated in a new form which facilitates its computational efficiency that allows an effective multiscale material–structural analysis. Towards this goal, incremental and total formulations of the governing equations are derived. A new stress update computational method is established to solve for the nonlinear material constituents along with the micromechanical equations. The method is well-suited for multiaxial finite increments of applied average stress or strain fields. Explicit matrix form of the HFGMC model is presented which allows an immediate and convenient computer implementation of the offered method. In particular, the offered derivations provide for the residual field vector (error) in its incremental and total forms along with an explicit expression for the Jacobian matrix. This enables the efficient iterative computational implementation of the HFGMC as a stand alone. Furthermore, the new formulation of the HFGMC is used to generate a nested local-global nonlinear finite element analysis of composite materials and structures. Applications are presented to demonstrate the efficiency of the proposed approach. These include the behavior of multiphase composites with nonlinearly elastic, elastoplastic and viscoplastic constituents

    Comparing traditional estimators and the estimators of (PSO) algorithm for some growth models of gross domestic product in Iraq

    Get PDF
    Growth models are considered to be one of the most important statistical means that is widely used in the study of the behaviors of different phenomena throughout time, and the estimation of the parameters of these models is considered to be the key element that plays a major role in the inference about these models. In this paper, this problem will be discussed briefly. The aim of the paper is to compare the estimators of some traditional methods and the estimators of the Particle Swarm Optimization (PSO) algorithm for estimating the parameters of some growth models as well as building the best growth model for the Gross Domestic Product (GDP) in Iraq. The growth models that are used in this paper will include three linear models which are Polynomials of order (1, 3, and 5) as well as three nonlinear models which are (The Logistic Model, The Gompertz Model, and The Richards Model). It was concluded that the (PSO) algorithm was better than the traditional methods in estimating the parameters of the growth models, also the fifth degree polynomial was the best model to describe the (GDP) data in Iraq

    A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    Get PDF
    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated

    A Contribution to the Knowledge of Vascular Flora of the Site of Biological and Ecological Interest of Kharouba in the Central Plateau of Morocco

    Get PDF
    The current study aims to quantify and evaluate the Tetraclinis stands (Tetraclinis articulata (Vahl.) Masters) richness and floristic diversity at Kharouba Site of Biological and Ecological Interest (SBEI). The 150 floristic surveys conducted in the site allowed us to inventory 143 species distinguished with rare taxa majority that are distributed over 54 families and 123 genera. This reduced number of taxa reflects the alarming biodiversity deterioration of the SBEI. The study also enabled us to define the biological spectrum of the study area that is characterized by a significant abundance of Therophytes
    • …
    corecore