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The recent High Fidelity Generalized Method of Cells (HFGMC) micromechnical modeling framework of
multiphase composites is formulated in a new form which facilitates its computational efficiency that
allows an effective multiscale material–structural analysis. Towards this goal, incremental and total for-
mulations of the governing equations are derived. A new stress update computational method is estab-
lished to solve for the nonlinear material constituents along with the micromechanical equations. The
method is well-suited for multiaxial finite increments of applied average stress or strain fields. Explicit
matrix form of the HFGMC model is presented which allows an immediate and convenient computer
implementation of the offered method. In particular, the offered derivations provide for the residual field
vector (error) in its incremental and total forms along with an explicit expression for the Jacobian matrix.
This enables the efficient iterative computational implementation of the HFGMC as a stand alone. Fur-
thermore, the new formulation of the HFGMC is used to generate a nested local-global nonlinear finite
element analysis of composite materials and structures. Applications are presented to demonstrate the
efficiency of the proposed approach. These include the behavior of multiphase composites with nonlin-
early elastic, elastoplastic and viscoplastic constituents.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Classical nonlinear micromechanical models of binary composite
materials have been the subject of many investigations over the last
three decades. The goal of these models is predominately centered
on generating the nonlinear effective response of the material and
less on the local spatial variation of the deformation fields within
the constituents. Reviews of this class of nonlinear and linear micro-
mechanical methods can be found in Aboudi (1991), Christensen
(1979), and Nemat-Nasser and Horii (1993), among several others.
On the other hand, predicting local nonlinear mechanical behavior
of periodic multiphase materials requires detailed description of
the spatial deformations of the phases subject to remote loading.
Therefore, refined micromechanical models are unavoidable in this
case even when only considering a repeating unit-cell (RUC) due to
its relative complex multiphase microstructure.

Computational nonlinear micromechanical models for multi-
phase RUC can be accomplished using general purpose continuum
mechanics numerical methods, such as the finite-element, bound-
ary element and finite-difference. Another analytic alternative,
directly specialized for periodic multiphase composites, is the High
ll rights reserved.

: +972 3 640 7617.

anta, GA 30332, USA.
Fidelity Generalized Method of Cells (HFGMC), expanded review of
which can be found in Aboudi (2004). When using the HFGMC ap-
plied for periodic multiphase composites, the geometry of the RUC
is divided into relatively small number of cells, also referred as
subcells. The HFGMC employs higher order displacement expan-
sions in the cells and employs both stress and displacement micr-
ovariables to satisfy, on an average basis, the equilibrium
equations as well as the traction and displacement continuity rela-
tions across the interfaces between the cells. In addition, the peri-
odicity conditions are explicitly recognized in the formulation. The
HFGMC can be viewed as a higher order extension of the General-
ized Method of Cells (GMC) (Paley and Aboudi, 1992). It was first
developed as a higher-order-theory for modeling non-periodic
functionally graded composites (Aboudi et al., 1999) and for linear
multi-phase periodic composite media by Aboudi et al. (2001). Ar-
nold et al. (2004) have used this theory for the thermomechanical
analysis of internally cooled structures at elevated temperatures
for aerospace engine applications. The higher order theory was also
used in the analysis of adhesively bonded composite joints by Bed-
narcyk and Yarrington (2004) and Bednarcyk et al. (2006).

One major advantage of the HFGMC model stems from its inher-
ent ability to couple between the internal normal and shear
deformations within the phases. The HFGMC has been recently ap-
plied to predict the linear, inelastic and time-dependent thermo-
mechanical behavior of different composite material systems.
Aboudi (2001) applied the HFGMC to predict the coupled electro-
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magneto-thermo-elastic behavior of multiphase composites. The
HFGMC was further generalized for the analysis of composites with
inelastic and viscoelastic–viscoplastic phases by Aboudi et al.
(2003) and Aboudi (2005), respectively. Interfacial damage in the
form of fiber–matrix debonding in metal matrix composites was
investigated by Bednarcyk et al. (2004) and the effect of a fiber loss
was analyzed in conjunction with HFGMC by Ryvkin and Aboudi
(2007). More recently Bednarcyk et al. (2008) the HFGMC was
enhanced to include internal pore pressure for the analysis of foam
insulation of the external tank of the space shuttle.

Efficient numerical formulation of nonlinear micromechanical
analysis has received relatively less attention perhaps due to the fact
that classical nonlinear micromechanical models can be integrated
and solved with small incrementation schemes. These require large
number of increments for an applied average stress or strain. They
are effective and stable only for very small increments and predom-
inately fixed or monotonic remote loading. Linearized incrementa-
tion methods are not capable of solving the nonlinear
micromechanical equations for large or finite increments of loading,
especially when large non-proportional changes occur in the local
deformation fields. The latter effects are more pronounced in the
case when damage, for example, is included in the formulations.
Coupled micromechanical and damage formulations require proper
treatment of energy dissipation and strain softening. Therefore, iter-
ative micromechanical solution methods, with tailored stress cor-
rection schemes, are needed to capture the local and global load
re-distribution that is associated with nonlinear and damage effects.
Lagoudas et al. (1991) and Gavazzi and Lagoudas (1990) used the
Mori–Tanaka averaging scheme based on modeling the average elas-
tic–plastic response of the entire metallic matrix phase. They com-
puted the Eshelby tensor using the instantaneous matrix material
properties. Also, they approximated the form of the concentration
tensors by making the instantaneous moduli a function of the aver-
age stresses in the matrix phase, and used the backward difference to
integrate the incremental elastic–plastic equations. The method was
compared to experimental and with results from the finite element
hexagonal unit cell for both fibrous and particulate composites.
Good agreements were obtained for particulate composites with
small concentration of particles. However, in the case of fibrous com-
posites, the Mori–Tanaka method underestimates the plastic strains
under certain transverse loading paths. Doghri and Ouaar (2003) and
Delannay et al. (2007) also extended the Mori–Tanaka class of non-
linear effective modeling using linearized tangential predictions and
incrementations of multiphase metal matrix composites. Great care
was given to the numerical formulation using consistent plasticity
tangent operators and integration scheme suitable for cyclic loading
and finite increments. Haj-Ali et al. (2001), Haj-Ali and Kilic (2003),
Haj-Ali and Muliana (2004), Muliana and Haj-Ali (2005, 2008) and
Haj-Ali (2008, 2009) developed different numerical formulations
for fiber reinforced plastic (FRP) class of composites applied for the
GMC and other nonlinear micromechanical models including time-
dependent, nonlinear and damage effects.

The overall goal of applying the HFGMC is for refined nonlinear
modeling of multiphase composites where adapted refinement of
spatial variability can be performed to capture the local deforma-
tion fields. Another goal is the application of the HFGMC in a
local-global multi-scale analysis of composite materials and struc-
tures. Towards these goals, the efficient nonlinear mechanical for-
mulation and computational implementation of the HFGMC takes
priority for the previously outlined arguments and in order to solve
potential large-scale problems. This study presents a viable numer-
ical integration of the HFGMC equations that allows the method to
be used with arbitrary finite increments of applied mechanical
loading. Incremental and total formulations of the governing equa-
tions are derived accompanied by explicit matrix form of the line-
arized equations. A proposed iterative computational
implementation is presented and examined in its ability for rapid
error reduction when finite increment of applied average strain is
given. The new nonlinear formulation is suitable for implementa-
tion within displacement-based nonlinear FE structural analysis.
Applications of the HFGMC with the proposed numerical formula-
tions and implementations are presented.

The structure of this paper is outlined as follows. Section 2 presents
general incremental and total nonlinear micromechanical derivations.
Section 3 describes the proposed numerical algorithms and their
implementations. Section 4 presents numerical applications and engi-
neering analyses, and, finally, conclusions are given in Section 5.

2. General formulation

The HFGMC micromechanical modeling framework for doubly
periodic multiphase composite media has been fully described
and reviewed by Aboudi (2004). This framework is based on the
homogenization technique of composites with periodic micro-
structure as shown in Fig. 1. The repeating unit volume of such a
composite, Fig. 2, is divided into arbitrary number of rectangular
cells, labeled by the indices ðbcÞ, each of which may contain a
distinct nonlinear homogeneous material. The dimensions of the
cell along the 2 and 3 axes are denoted by hb and lc, respectively.
In the present doubly periodic case of continuous fibers, a local
coordinate system ðyðbÞ2 ; yðcÞ3 Þ is introduced in each cell whose origin
is located at its center, see Fig. 2.

In the framework of the HFGMC model for periodic composites,
the displacement vector in the cell ðbcÞ is given, e.g. Aboudi (2004),
by the higher-order polynomial form

uðbcÞ ¼ �� � xþWðbcÞ
ð00Þ þ yðbÞ2 WðbcÞ

ð10Þ þ yðcÞ3 WðbcÞ
ð01Þ

þ 1
2

3yðbÞ22 �
h2

b

4

 !
WðbcÞ
ð20Þ þ

1
2

3yðcÞ23 �
l2
c

4

 !
WðbcÞ
ð02Þ ð1Þ

where �� is the externally applied average strain. The coefficient
variables vectors, WðbcÞ

ðmnÞ, represent the volume averaged displace-
ment in the case of m ¼ n ¼ 0, which together with the additional
higher-order terms have to be determined.

The strain vector at each cell is defined by

�ðbcÞ � f�11; �22; �33;2�12;2�13;2�23gðbcÞ ð2Þ

After some algebraic manipulations, it is possible to represent the
strain vector in the form

�ðbcÞ ¼ ��þPð10ÞW
ðbcÞ
ð10Þ þPð01ÞW

ðbcÞ
ð01Þ þPð20ÞW

ðbcÞ
ð20Þy

ðbÞ
2 þPð02ÞW

ðbcÞ
ð02Þy

ðcÞ
3 ð3Þ

where,

Pð10Þ ¼

0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

2666666664

3777777775
; Pð01Þ ¼

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 0 1

2666666664

3777777775
ð4Þ

and Pð20Þ ¼ 3Pð10Þ, Pð02Þ ¼ 3Pð01Þ.
The average strain in the cell ðbcÞ can be identified as

��ðbcÞ ¼ ��þ Pð10ÞW
ðbcÞ
ð10Þ þ Pð01ÞW

ðbcÞ
ð01Þ ð5Þ

The strain influence matrix BðbcÞ of the cell can be expressed in an
incremental form by

D��ðbcÞ � BðbcÞD�� ¼ Iþ Pð10Þ bDðbcÞð10Þ þ Pð01Þ bDðbcÞð01Þ

h i
D�� ð6Þ

with I being the identity matrix. In addition,bDðbcÞð10ÞD�� ¼ DWðbcÞ
ð10Þ;

bDðbcÞð01ÞD�� ¼ DWðbcÞ
ð01Þ ð7Þ
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Fig. 1. Schematic illustration of a unidirectional periodic array in the global x2 � x3 plane of multiphase composite media with its repeating unit-cell (RUC), defined with
respect to its y2 � y3 local coordinate system.
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Fig. 2. General arrangement of cells and their geometry and coordinate systems for the HFGMC-RUC model. Mirrored cells-interfaces are illustrated to enforce the periodic
boundary conditions.
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where bDðbcÞðmnÞ are determined after the solution of the entire coupled
governing equations of the cells.

The resulting linear expansion of the stress vector can be
expressed as

rðbcÞ ¼ �rðbcÞ þ r
ðbcÞ
ð10Þy

ðbÞ
2 þ r

ðbcÞ
ð01Þy

ðcÞ
3 ð8Þ
where �rðbcÞ is the average stress in the cell ðbcÞ and r
ðbcÞ
ðmnÞ are higher-

order stresses which can be directly expressed in terms of the stress
moments defined by

SðbcÞðmnÞ ¼
1

hblc

Z hb=2

�hb=2

Z lc=2

�lc=2
rðbcÞðyðbÞ2 Þ

mðyðcÞ3 Þ
ndyðbÞ2 dyðcÞ3 ð9Þ
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These moments were previously employed in the original deriva-
tion of the HFGMC (see Aboudi, 2004). The current form of the
stress vector is exactly equivalent to the original derivation:

r
ðbcÞ
ð10Þ ¼

12

h2
b

SðbcÞð10Þ; r
ðbcÞ
ð01Þ ¼

12

l2
c

SðbcÞð01Þ ð10Þ

The standard pointwise equilibrium equationsr � r ¼ 0, lead, in the
framework of HFGMC theory, to the volume-average form

L2r
ðbcÞ
ð10Þ þ L3r

ðbcÞ
ð01Þ ¼ 0 ð11Þ

where L2 and L3 are given by the Boolean matrices:

L2 ¼
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

264
375; L3 ¼

0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

264
375
ð12Þ

For the general case of a nonlinear material filling the cell ðbcÞ, the
incremental form of its constitutive relation is given by

DrðbcÞ ¼ CðbcÞD�ðbcÞ ð13Þ

where CðbcÞ is the proper instantaneous or consistent fourth-order
tangent stiffness tensor that is selected based on the considered
nonlinear material behavior within the cell, such as total deforma-
tion theory, incremental plasticity, nonlinear viscoelasticity, and
viscoplasticity. Standard forms of the fourth-order tangent or con-
sistent tangent tensors for these material models can be found in
Simo and Hughes (1998), Khan and Huang (1995) and ABAQUS
(2007). For the particular Bodner-Partom viscoplastic theory, Bod-
ner (2002), the time-dependent tangent tensor has been derived
by Paley and Aboudi (1991) in the form

CðbcÞijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ � 2l srt _�P
rt

spq _�pq
� sijskl

smnsmn

� �ðbcÞ
ð14Þ

where k and l are the Lame’ constants of the material filling the cell
ðbcÞ, sij is the deviatoric part of the stress rij in the cell, �P

ij is the
corresponding plastic (inelastic) strain component and dij is the
Kronecker delta.

The incremental forms of the constitutive models for the differ-
ent phases are used in the linearized formulation of the HFGMC. In
addition, the corresponding total integrated constitutive forms are
also employed to derive the HFGMC nonlinear equations using
total microvariables and stresses in the cells.

The incremental stress is of the form

DrðbcÞ ¼ D�rðbcÞ þ Dr
ðbcÞ
ð10Þy

ðbÞ
2 þ Dr

ðbcÞ
ð01Þy

ðcÞ
3 ð15Þ

By substituting the incremental strain given by Eq. (3) and compar-
ing with Eq. (15) leads to the following relations

D�rðbcÞ ¼ CðbcÞD��þ CðbcÞPð10ÞDWðbcÞ
ð10Þ þ CðbcÞPð01ÞDWðbcÞ

ð01Þ

Dr
ðbcÞ
ð10Þ ¼ CðbcÞPð20ÞDWðbcÞ

ð20Þ

Dr
ðbcÞ
ð01Þ ¼ CðbcÞPð02ÞDWðbcÞ

ð02Þ ð16Þ

It should be noted that D�rðbcÞ is the incremental average stress in the
cell. These relations are used in the equilibrium equations, Eq. (11),
resulting into

L2CðbcÞPð20ÞDWðbcÞ
ð20Þ þ L3CðbcÞPð02ÞDWðbcÞ

ð02Þ ¼ 0 ð17Þ

This equation can be equivalently expressed in the compact form

AðbcÞ2ð20ÞDWðbcÞ
ð20Þ þ AðbcÞ3ð02ÞDWðbcÞ

ð02Þ ¼ 0 ð18Þ

where

AðbcÞiðmnÞ � LiC
ðbcÞPðmnÞ; ðmnÞ–ð00Þ ð19Þ
and

AðbcÞið00Þ � LiC
ðbcÞ ð20Þ

Next, the traction and displacement continuity are imposed on
an integral basis over the interfaces. Consider the two interfaces
between the neighboring cells ðbcÞ and ðb1cÞ, and ðbcÞ and ðbc1Þ
where b1 ¼ bþ 1 and c1 ¼ cþ 1, the displacement continuity
conditions are given byZ lc=2

�lc=2
uðbcÞjyðbÞ

2
¼�hb=2 � uðb1cÞj

y
ðb1 Þ
2 ¼hb1

=2

� �
dyðcÞ3 ¼ 0 ð21Þ

with b ¼ 1; . . . ;Nb � 1 and c ¼ 1; . . . ;Nc. Similarly, the displacement
continuity at the interface whose normal is in the y3-direction isZ hb=2

�hb=2
uðbcÞjyðcÞ

3
¼lc=2 � uðbc1Þj

y
ðc1Þ
3 ¼�lc1 =2

� �
dyðbÞ2 ¼ 0 ð22Þ

with b ¼ 1; . . . ;Nb and c ¼ 1; . . . ;Nc � 1. The needed displacement
periodicity conditions areZ lc=2

�lc=2
uð1cÞjyð1Þ2 ¼h1=2 � uðNbcÞj

y
ðNbÞ
2 ¼�hNb=2

� �
dyðcÞ3 ¼ 0 ð23Þ

with c ¼ 1; . . . ;Nc.Z hb=2

�hb=2
uðb1Þjyð1Þ3 ¼�l1=2 � uðbNcÞj

y
ðNcÞ
3 ¼lNc=2

� �
dyðbÞ2 ¼ 0 ð24Þ

with b ¼ 1; . . . ;Nb.
The two traction continuity conditions areZ lc=2

�lc=2
L2r

ðbcÞjyðbÞ
2
¼�hb=2 � L2r

ðb1cÞj
y
ðb1Þ
2 ¼hb1

=2

� �
dyðcÞ3 ¼ 0 ð25Þ

with b ¼ 1; . . . ;Nb � 1 and c ¼ 1; . . . ;Nc.Z hb=2

�hb=2
L3r

ðbcÞjyðcÞ3 ¼lc=2 � L3r
ðbc1Þj

y
ðc1 Þ
3
¼�lc1 =2

� �
dyðbÞ2 ¼ 0 ð26Þ

with b ¼ 1; . . . ;Nb and c ¼ 1; . . . ;Nc � 1. The needed traction period-
icity conditions areZ lc=2

�lc=2
L2r

ð1cÞjyð1Þ2 ¼h1=2 � L2r
ðNbcÞj

y
ðNb Þ
2 ¼�hNb=2

� �
dyðcÞ3 ¼ 0 ð27Þ

with c ¼ 1; . . . ;Nc.Z hb=2

�hb=2
L3r

ðb1Þjyð1Þ3 ¼�l1=2 � L3r
ðbNcÞj

y
ðNcÞ
3
¼lNc=2

� �
dyðbÞ2 ¼ 0 ð28Þ

with b ¼ 1; . . . ;Nb. It should be emphasized that the periodicity
relations, Eqs. (23),(24) and (27),(28), are satisfied by mirroring
and extending the cells near the periodic interfaces as shown in
Fig. 2. Therefore Eqs. (21),(22) and (25),(26) are equivalent to the
periodic relations by using the proposed mirroring technique. For
example, the continuity equations can be applied to satisfy the peri-
odicity conditions by simply performing the shifting operation:
ðb ¼ Nb þ 1; cÞ ) ð1; cÞ. Thus Eqs. (21),(22) and (25),(26) can be
applied using the outlined mirroring procedure to enforce the peri-
odicity conditions as well.

The four displacement and traction continuity equations, Eqs.
(21),(22) and (25),(26), can be expressed in the incremental
form:

DWðbcÞ
ð00Þ �

hb

2
DWðbcÞ

ð10Þ þ
h2

b

4
DWðbcÞ

ð20Þ

" #

� DWðb1cÞ
ð00Þ þ

hb1

2
DWðb1cÞ

ð10Þ þ
h2

b1

4
DWðb1cÞ

ð20Þ

" #
¼ 0 ð29Þ
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DWðbcÞ
ð00Þ þ

lc
2

DWðbcÞ
ð01Þ þ

l2
c

4
DWðbcÞ

ð02Þ

" #

� DWðbc1Þ
ð00Þ �

lc1

2
DWðbc1Þ

ð01Þ þ
l2
c1

4
DWðbc1Þ

ð02Þ

" #
¼0 ð30Þ

AðbcÞ2ð10ÞDWðbcÞ
ð10Þ þ AðbcÞ2ð01ÞDWðbcÞ

ð01Þ �
hb

2
AðbcÞ2ð20ÞDWðbcÞ

ð20Þ

� �
� Aðb1cÞ

2ð10ÞDWðb1cÞ
ð10Þ þ Aðb1cÞ

2ð01ÞDWðb1cÞ
ð01Þ þ

hb1

2
Aðb1cÞ

2ð20ÞDWðb1cÞ
ð20Þ

� �
¼ Aðb1cÞ

2ð00Þ � AðbcÞ2ð00Þ

h i
D�� ð31Þ

AðbcÞ3ð10ÞDWðbcÞ
ð10Þ þ AðbcÞ3ð01ÞDWðbcÞ

ð01Þ þ
lc
2

AðbcÞ3ð02ÞDWðbcÞ
ð02Þ

� �
� Aðbc1Þ

3ð10ÞDWðbc1Þ
ð10Þ þ Aðbc1Þ

3ð01ÞDWðbc1Þ
ð01Þ �

lc1

2
Aðbc1Þ

3ð02ÞDWðbc1Þ
ð02Þ

� �
¼ Aðbc1Þ

3ð00Þ � AðbcÞ3ð00Þ

h i
D�� ð32Þ

Let us define the vector of incremental variables of each ðbcÞ cell
as

DXðbcÞ � DWð10Þ;DWð01Þ;DWð00Þ;DWð20Þ;DWð02Þ
� �ðbcÞ ð33Þ

Fig. 3 illustrates the common interfaces between a cell ðbcÞ and its
neighboring cells. As previously shown, it is sufficient to consider
the continuity conditions at the two interfaces y2 ¼ hb=2 and
y3 ¼ lc=2 (illustrated by bold lines in Fig. 3).

The increment of the residual vector RðbcÞ for the governing
equations is arranged in the order of traction continuity, Eqs.
(31),(32), the internal equilibrium equations for the cell, Eq. (18),
followed by the displacement continuity, Eqs. (29),(30), written
for the above two interfaces:

DRðbcÞ � DRr; DRE; DRuf gðbcÞ

¼ TðbcÞ1 DXðbcÞ þ Tðb1cÞ
2 DXðb1cÞ þ Tðbc1Þ

3 DXðbc1Þ

� DðbcÞ1 D��� Dðb1cÞ
2 D��� Dðbc1Þ

3 D�� ð34Þ

The matrix TðbcÞ1 operates on the incremental microvariable
vector DXðbcÞ and provides the incremental traction and displace-
ment at the two interfaces within the cell ðbcÞ. Its structure is
given by
y3

y2

( 1)

( 1 )

(1)

(2)

(3)

(4)

(1)

(3)) (

(2) (4)

1 1

1 1

1 1

1 1

Fig. 3. One-cell configuration with its neighboring cells showing its two primary
”feed-forward” interfaces along with the location for the stress integration points.
TðbcÞ1 ¼

A2ð10Þ A2ð01Þ 0 � hb

2 A2ð20Þ 0

A3ð10Þ A3ð01Þ 0 0 lc
2 A3ð02Þ

0 0 0 A2ð20Þ A3ð02Þ

� hb

2 I 0 I h2
b

4 I 0

0 lc
2 I I 0 l2c

4 I

26666666664

37777777775

ðbcÞ

ð35Þ

Similarly, the matrices Tðb1cÞ
2 and Tðbc1Þ

3 operate on the incremental

microvariable vectors, DXðb1cÞ and DXðbc1Þ of the adjacent cells,
respectively. They provide the incremental traction and displace-
ment on the other side of the two interfaces. For example, the

matrix Tðbc1Þ
3 provides the incremental displacement and stress

within the cell ðbc1Þ needed to complete the continuity conditions
at the common interface of the adjacent cell ðbcÞ. These two matri-
ces are of the form

Tðb1cÞ
2 ¼

�A2ð10Þ �A2ð01Þ 0 � hb

2 A2ð20Þ 0
0 0 0 0 0
0 0 0 0 0

� hb

2 I 0 �I � h2
b

4 I 0
0 0 0 0 0

26666664

37777775

ðb1cÞ

ð36Þ

Tðbc1Þ
3 ¼

0 0 0 0 0
�A3ð10Þ �A3ð01Þ 0 0 lc1

2 A3ð02Þ

0 0 0 0 0
0 0 0 0 0

0 lc1
2 I �I 0 � l2c

4 I

26666664

37777775

ðbc1Þ

ð37Þ

The Di matrices can be viewed as the contribution to the local stres-
ses at the considered two interfaces of the corresponding cells from
the externally applied global strain field. Their structure is given by

DðbcÞ1 ¼

�A2ð00Þ

�A3ð00Þ

0
0
0
0

2666666664

3777777775

ðbcÞ

Dðb1cÞ
2 ¼

A2ð00Þ

0
0
0
0
0

2666666664

3777777775

ðb1cÞ

Dðbc1Þ
3 ¼

0
A3ð00Þ

0
0
0
0

2666666664

3777777775

ðbc1Þ

ð38Þ

It is interesting to note that the displacement continuity and equi-
librium equations expressed in terms of the incremental micro-
variables result in a set of homogeneous algebraic equations. This
fact is useful for condensation purposes of the overall system of
equations as will be shown later.

The final system of the tangential governing equations is
obtained by assembling the contributions from all the cells by
utilizing the expressions given by Eq. (34). Fig. 4 illustrates the
form of the global tangential system of equations highlighting
the contribution of a general cell ðbcÞ. The expanded form of the
vector of variables is

DX ¼ DXð11Þ;DXð12Þ; . . . ;DXðNbNcÞ
n o

ð39Þ

Alternatively, it is possible to perform the assembly on a cell-by-cell
basis where in such a case all indicted matrices in this figure will be
solely computed from the cell stiffness and assembled on a column
basis.

It is possible to dramatically reduce the computational effort by
employing a condensation procedure. To this end, the previously
identified homogeneous and non-homogeneous equations at the
cell level can be grouped into two parts. The re-partitioned system
has the form

Arr Aru

Aur Auu

� �
DXr

DXu

� �
¼

D
0

� �
D��f g ð40Þ
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Fig. 4. Overall tangential system of equations for the HFGMC-RUC model indicating the contribution of cell ðbcÞ to the system and showing a row of complete equations for
this cell.
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The terms Arr and Auu in Eq. (40) involve the traction continuity
(non-homogeneous equations) on the one hand, and the equilib-
rium and displacement continuity (homogeneous equations) on
the other hand. The off diagonal terms Aru and Aur involve the
mixed terms that emerge from re-partitioning the system of equa-
tions. The two parts of the vector of variables, DXr and DXu, have
similar definitions. The solution can be represented symbolically as:

DX ¼ A�1DD�� � bDD�� ð41Þ

where the square matrix A that appears on the left-hand-side of Eq.
(40) has the dimension 15NbNc � 15NbNc in a non-condensed form.
However, by performing the condensation procedure the dimension
of the condensed system reduces to 6NbNc � 6NbNc.

The overall (global) tangential stiffness matrix defined from the
effective incremental stress–strain relation, D�r ¼ C�D��, of the
composite can be obtained by determining the influence matrices
BðbcÞ defined by the incremental form of Eqs. (5)–(7). The needed
matrices bDðbcÞð10Þ and bDðbcÞð01Þ can be identified from bD in Eq. (41) which
can be partitioned as follows

bDðbcÞ ¼
bDð10ÞbDð01ÞbDð00ÞbDð20ÞbDð02Þ

2666666664

3777777775

ðbcÞ

; ð42Þ

Consequently, the effective tangential stiffness of the composite can
be readily evaluated as follows (Haj-Ali, 2008; Aboudi, 2008)

C� ¼ 1
HL

XNb

b¼1

XNc

c¼1

hblcCðbcÞBðbcÞ �
XNb

b¼1

XNc

c¼1

hblcBTðbcÞCTðbcÞ ð43Þ

which shows the symmetry of the effective tangential stiffness of
the composite.

Next, we derive the residual vector of the governing equation for a
characteristic cell ðbcÞ that is needed in order to obtain the error of
the nonlinear system during the iterative solution. The total (rather
than incremental) interfacial displacements and stresses are deter-
mined from the total strains derived from the trial microvariables.
These field variables are evaluated at both sides of the neighboring
cells as illustrated in Fig. 3. The locations of the integration stress
points are indicated by the solid circles. It should be noted that the
displacement residuals are explicitly zero since they do not involve
stiffness variables. The residual vector of cell ðbcÞ is given by:

RðbcÞ ¼

R
½L2r

ðbcÞ � L2r
ðb1cÞ�dyðcÞ3R

½L3r
ðbcÞ � L3r

ðbc1Þ�dyðbÞ2

L2r
ðbcÞ
ð10Þ � L3r

ðbcÞ
ð01Þ

0
0

266666664

377777775!
L2r

ðbcÞ1 � L2r
ðb1cÞ3

L3r
ðbcÞ2 � L3r

ðbc1Þ4

L2r
ðbcÞ
ð10Þ � L3r

ðbcÞ
ð01Þ

0
0

26666664

37777775 ð44Þ

where the first two components define the traction continuities in a
total form, whereas the third term stands for the total form of the
equilibrium equations in the cell. The transition from the mathe-
matical definition of the residual vector to its numerical form is
expressed by the two parts of Eq. (44). The equilibrium equations
involve higher-order stresses that are obtained from the total stress
values evaluated at the stress integration points:

r
ðbcÞ
ð10Þ ¼

1
hb

rðbcÞ3 � rðbcÞ2
� 	

; r
ðbcÞ
ð01Þ ¼

1
lc

rðbcÞ2 � rðbcÞ4
� 	

ð45Þ

The cell’s residual vector RðbcÞ is used in the process of assembling
the overall residual vector of the HFGMC model RHFGMC given by

RHFGMC ¼ Rð11Þ; ::;RðbcÞ; ::;RðNbNcÞ
n o

ð46Þ

This residual vector should be equal to zero in order to solve for the
nonlinear HFGMC equations. This is numerically achieved by
requiring that its norm should be sufficiently small. In the case
where a mixed stress and strain combination is applied (e.g., a uni-
axial transverse loading defined by: ��22–0 and �rij ¼ 0 for all other
components), an additional global residual vector, RG, must be
introduced, (for the above uniaxial transverse loading,
RG ¼ f�r11; �r33; �r23; �r13; �r12g), The condition that RG ¼ 0 should be
satisfied together with RHFGMC ¼ 0.
3. Numerical Implementation of HFGMC

Recent advances in computer technology have made it possible
and practical for carrying out refined analysis of composite
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Fig. 5. Iterative solution algorithm using the new nonlinear HFGMC formulation: incremental and total formulations with stress update-correction.
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structures including nonlinear effects. The use of nonlinear stress–
strain relations, such as those provided by plasticity and other
inelastic models, is now considered a standard engineering prac-
tice. However, nonlinear modeling approaches that couple three-
dimensional micromechanical and structural analysis are not
widespread for laminated composite structures. Such coupled non-
linear 3D micromechanical-structural analysis may be needed in
order to produce reliable structural designs. Realistic nonlinear
and 3D constitutive models are needed to depict accurately the
structural response in the presence of edge effects and discontinu-
ities. These discontinuities, such as crack tips, holes, and cutouts,
usually have a significant impact on the response of the structure,
because damage and failure will typically initiate at and propagate
from these locations.

In the present section, the previous analytical derivation of the
HFGMC model is numerically implemented for the nonlinear stress
analysis of multiphase materials and composite structures. To this
end, the numerical algorithm of this implementation proceeds as
follows. Given a finite-size of an average strain increment and
the history of deformations in the cells, the strain interaction
matrices, BðbcÞ, are first evaluated after establishing the solution
given by Eq. (41). This linearized solution results from the imple-
mentation of the tangential equations, namely, the equilibrium
equations of the cells, the incremental traction and displacement
interfacial continuities along with periodic conditions, all
expressed with the increments of the microvariables. This linear-
ized stress analysis will be referred to as the trial state. However,
if this trial solution is accepted, two types of errors will result
and accumulate. The first error occurs in the predicted strain
increments D��ðbcÞ because the strain interaction matrices are
derived using the tangent stiffness matrices CðbcÞ of Eq. (13) of
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the cells at the beginning of the increment. The second error occurs
as a result of using the tangent stiffness matrices to compute the
spatial stress increments �rðbcÞ, Eq. (15), in the cells for this trial
state. It is important to mention that while the above two errors
occur, the incremental micromechnical equations (equilibrium,
displacement and traction continuity, and periodicity constraints)
are satisfied by the trial state. However, the latter micromechanical
constraints are satisfied with increasingly inaccurate deformation
(total stress and strain) states in the cells. Therefore, a correction
procedure must be used in order to accurately integrate the nonlin-
ear constitutive material behavior and simultaneously satisfy the
micromechanical equations.
HFGMC Local Convergence Rate

(N , N )

(4,4)

(8,8)
(16,16)

(32,32)

Applied

Iteration Number

log10 RHFGMC

22 0

HFGMC Global Convergence Rate

Iteration Number
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Fig. 7. Error reduction and convergence of the HFGMC for nonlinear glass/epoxy
composite with applied transverse loading. (a) Local error convergence measure for
RHFGMC when the composite is subjected to a general multi-axial strain increment.
(b) Global RG convergence measure of the effort to minimize the effective stress
residual.
The derived incremental HFGMC micromechanical relations are
exact only in the case of linear stress–strain relations in the fiber
and matrix cells. Due to a nonlinear response in one or more of
the cells, the tangential relations will, as mentioned above, violate
the constitutive equations. Hence, an iterative correction scheme is
needed in order to satisfy both the micromechanical constraints
and the constitutive equations. The tasks for the developed micro-
mechanical algorithm can be stated as follows. Given the history of
field variables in the cells from previous converged solution and a
constant average strain rate for the RUC within the current time
increment, one needs to update the effective stress, effective stiff-
ness, and the history variables at the end of the increment. Fig. 5
illustrates the proposed iterative correction algorithm developed
for the HFGMC modeling framework. The first step in this figure
describes the established converged solution from the previous
increment. In Step-2, the trial tangential state is solved and the
incremental displacement microvariables are determined. Next,
the iterative procedure starts by evaluating the total form of the
trial microvriables, see step 3.1. The strain increments are subse-
quently evaluated at the integration points in each of the cells. In
turn, the total stresses are evaluated as illustrated in steps 3.2
and 3.3 in Fig. 5 by solving the appropriate nonlinear constitutive
equation of the material within the cell. The residual error vector
RHFGMC is formed and its norm can be equated to a small given tol-
erance, see steps 3.4 and 3.5. In the case of no convergence,
improved trial increments of the microvariables are achieved by
using a Newton–Raphson type nonlinear solution method as
shown in step 3.5 of the iterative algorithm in Fig. 5. The stress
and strain states that satisfy the constitutive relations but not
Fig. 8. Equivalent stress distribution in nonlinear glass/epoxy RUC models subject
to remote transverse stress: (a) HFGMC 3D model with ðNb;NcÞ ¼ ð32;32Þ after
convergence; (b) finite-element 2D model with generalized plane strain elements.
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Fig. 9. Transverse stress distribution in nonlinear glass/epoxy RUC models subject
to remote transverse stress: (a) HFGMC 3D model with ðNb;NcÞ ¼ ð32;32Þ after
convergence; (b) finite-element 2D model with generalized plane strain elements.
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the convergence tolerance can be either rejected (as shown in the
algorithm) or kept with the anticipation of further correction to
simultaneously satisfy the micromechanical relations along with
the constitutive equations. The Jacobian matrix A of the system
can be evaluated to improve the correction to the microvariable
in the next iteration. It should be noted that the calculated state
of the deformation fields from the previous un-converged iteration
y

Et

E

287 MPa

6 GPa

72.4 GPa ; 0.33

Matrix Uniaxial Stress--Strain

Fig. 10. Metallic matrix uniaxial elastoplastic linear-hardening stress–strain
behavior.
does not have to be rejected as illustrated in the iterative algorithm
in Fig. 5. This is because another alternative can be followed where
the current trial increment of the microvariables are kept along
with the deformation state while the incremental constitutive
update is performed from the previous iteration using the imposed
strain correction, obtained from the differences between the strain
increments of the successive iterations. As mentioned above, the
algorithm in Fig. 5 is illustrated for the first case where the consti-
tutive update is performed for a complete strain increment
evaluated from the entire incremental strain after correction.

The number of solution state variables needed for the
implementation of the HFGMC can vary depending on the type of
nonlinear constitutive model used for each cell. The current imple-
Iteration Number

22 0

(N , N )

(4,4)

(8,8)
(16,16)

(32,32)

Fig. 11. Error reduction and convergence of the HFGMC for metal-matrix composite
with applied transverse loading. (a) Local error convergence measure for RHFGMC

when the composite is subjected to a general multi-axial strain increment. (b)
Global RG convergence measure of the effort to minimize the effective stress
residual.



Fig. 12. Equivalent plastic strain distribution in metal–matrix RUC models subject
to remote transverse stress: (a) HFGMC 3D model with ðNb;NcÞ ¼ ð32;32Þ after
convergence; (b) finite-element 2D model with generalized plane strain elements.
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Fig. 13. Rate-dependent uniaxial stress–strain curves using the Bodner-Partom
model.
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Fig. 14. Effective (macroscopic) transverse stress–strain responses of the two-
phase viscoplastic composite as predicted by the HFGMC and refined FE analyses.

Fig. 15. Equivalent stress distribution in viscoplastic RUC models subject to remote
transverse stress: (a) HFGMC 3D model with ðNb;NcÞ ¼ ð32;32Þ; (b) finite-element
2D model with generalized plane strain elements.
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Fig. 16. Equivalent plastic strain distribution in viscoplastic RUC models subject to
remote transverse stress: (a) HFGMC 3D model with ðNb ;NcÞ ¼ ð32;32Þ; (b) finite-
element 2D model with generalized plane strain elements.
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mentation for the constitutive relations is very similar to the
strain-based incremental formulation used in a displacement-
based FE environment. The number of material points used to inte-
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Fig. 17. Effective (macroscopic) transverse stress–strain responses of the three-
phase viscoplastic composite as predicted by the HFGMC and refined FE analyses.
grate the HFGMC residual vector for each cell will multiply the
number of material history variables. Therefore, the total number
of material-based history variables for each cell is determined
based on multiplying the number of integration points within
the cell times its specific constitutive history variables. In addition
there is a need to store the number of displacement microvariables
for each cell. The latter is 15 for each cell that follows the doubly-
periodic multiphase formulation.

It is important to emphasize that the HFGMC is not related to
the classical displacement-based Finite Element (FE) method. The
objective of this discussion is not to undermine the well-estab-
lished FE approach rather to draw clear distinctions between these
two different formulations. In the FE formulation the displacement
continuity between two adjacent and connected elements is point-
wise satisfied by virtue of node sharing. In the HFGMC, the dis-
placement continuity between adjacent two cells is satisfied on
an average basis. This approximation allows the HFGMC to explic-
itly use stress variables in the formulation and directly apply trac-
tion continuity on an average basis on common interfaces between
cells. On the other hand, in the FE method nodal force equilibrium
is used. Another major difference between the two methods lies in
the fact that the continuum equilibrium equations are directly
applied in a volumetric average at each cell, which allows retaining
the cell stresses and their higher order moments in the formula-
tion. In difference, the FE method employs equilibrium through
the well known virtual work, weak flux form, expressed externally
using the nodal forces. The FE is a general method and can be
employed to generate micromechanical models for a priori given
Fig. 18. Equivalent stress distribution in viscoplastic RUC three-phase models
subject to remote transverse stress: (a) HFGMC 3D model with ðNb;NcÞ ¼ ð96;96Þ;
(b) finite-element 2D model with generalized plane strain elements.
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states of applied remote fields. This typically requires the applica-
tion of special numerical schemes needed to impose the proper
remote traction and displacement boundary conditions in order
to generate the correct internal fields. Unlike FE, the HFGMC is a
specialized modeling framework in which the remote fields are
directly tied to the micromechanical formulation (e.g., the remote
average strain is directly used in the HFGMC formulation). Finally,
the periodicity in the FE formulation is imposed only through dis-
placement boundary conditions, while in the HFGMC, the periodic
boundary conditions are imposed directly using both the displace-
ment and cell tractions. Again, our aim in the above discussion is to
draw clear distinctions between the two methods and not in any
way claim that the HFGMC can replace the general purpose and
well-established FE method.
Fig. 19. Equivalent plastic strain distribution in viscoplastic RUC three-phase
models subject to remote transverse stress: (a) HFGMC 3D model with
ðNb;NcÞ ¼ ð96;96Þ; (b) finite-element 2D model with generalized plane strain
elements.
4. Applications

Applications are performed to demonstrate the effectiveness of
the proposed nonlinear micromechanical formulation. In the first
application, we use the HFGMC with different number of total cells
in order to predict the nonlinear transverse response of Glass/Epoxy
FRP composite lamina. The fiber volume fraction v f of this composite
is taken to be v f ¼ 0:5. The fiber is considered to be linear and isotro-
pic with a Young’s modulus E ¼ 400 GPa and Poisson’s ratio m ¼ 0:2
while the matrix is considered as nonlinear modeled by the J2 defor-
mation theory with the Ramberg-Osgood representation. Fig. 6
shows the nonlinear Ramberg-Osgood form of the shear stress–
strain behavior along with the elastic properties for the matrix. Anal-
yses are performed using the HFGMC with different cell array sizes
Nb, Nc to examine the convergence characteristics of the microme-
chanical method. A transverse load, perpendicular to the fibers,
��22–0 is applied while all other average stress components are equal
to zero. This type of loading is considered a matrix-mode and typi-
cally yields pronounced nonlinear response. The analysis is set to
terminate when the corresponding average strain reaches 8%. This
strain level is imposed on the composite material in one increment.
This is considered a rather large increment of strain as linearized
solution methods usually require numerous number of increments.
This verification problem, on the other hand, is aimed at testing the
proposed new micromechanical solution approach and its ability to
converge in this severe case. Two nested levels of iterations can be
identified. The first is related the minimization of the global residual
vector RG. For this level of convergence, the algorithm iterates to sat-
isfy the traction free average stress, except for the imposed trans-
verse load direction that corresponds to the applied 8% strain. The
second level of iterations is directly related to the minimization of
the HFGMC residual vector RHFGMC , where for each trial state of aver-
age multiaxial strain increment, the HFGMC performs its local itera-
tive solution and convergence to the correct for the deformation
fields. The convergence rate is monitored at both global and local
HFGMC levels. Fig. 7(a) and 7(b) present the logarithm of the Euclid-
ean norm of the residual error vectors, log10kRGk, log10kRHFGMCk, at
the global and local levels, respectively, as a function of the iteration
number. The convergence tolerance is set to a relatively small mag-
nitude ðTol ¼ 10�6Þ as illustrated by the horizontal dashed lines in
both figures. Since the local residual is predominately governed by
interfacial tractions, one can interpret the imposed convergence cri-
teria to be Tol ¼ 10�6 MPa which is very small considering that in
this problem, the equivalent stress solution is of the order of
100 MPa. A more realistic tolerance will be of the order of 10�2 for
this case. As observed, the convergence is rapid and the error can
be reduced in several orders of magnitudes within few iterations.
The proposed HFGMC model is able to converge for such a tight tol-
erance in 10 iterations or less at the most. The case of ðNb;NcÞ ¼ ð4;4Þ
shows faster convergence rate perhaps due to the relatively smaller
number of fiber cells. As the number of cells increases, the conver-
gence trends are more consistent with each other. Having said that,
no attempt is done to examine these rates from a mathematical
perspective as this is considered beyond the scope of this study.

In order to examine the accuracy of HFGMC solution, a well-re-
fined FE model is generated using generalized plane strain elements
and that is subject to the same transverse loading. Fig. 8(a) and (b)
show the spatial distribution of the equivalent (Mises) stress req in
the fiber and matrix regions as predicted from the HFGMC and FE,
respectively. The solution obtained from the HFGMC correlates well
with the FE refined mesh solution. Similar observation can be
reached from the comparison between the spatial transverse-stress
distributions shown in Fig. 9(a) and (b), respectively.

The next application example is similar to the previous one,
however, a metal-matrix composite is considered herein.
Incremental plasticity is used for the matrix cells instead of the J2

deformation nonlinear theory. The elastoplastic matrix uniaxial
stress–strain relation is depicted in Fig. 10 where isotropic
hardening behavior is assumed. The fiber is considered to be linear
and isotropic with E = 414 GPa, m ¼ 0:15 and has a volume fraction
of 0.6. The matrix properties are listed in Fig. 10 where ry and Et

stand for the yield stress and the post yield linear hardening
modulus. In this case, a 1% of transverse strain was applied in one
increment. Fig. 11(a) and (b) show the norm of the error as a function
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of iteration number for HFGMC models with different ðNb;NcÞ cell ar-
rays. The tolerance values are indicated by the dashed lines of these
figures. The convergence in this case occurs with 7 iterations or less.
Similar trends of convergence are present to those in the previous
polymeric matrix example. In the previous example, a comparison
between the FE and HFGMC is done in terms of the spatial distribu-
tion of stresses. In the present case, Fig. 12(a) and (b) show the equiv-
alent plastic strain �P

eq distributions obtained from the HFGMC and
FE, respectively. Here too, good correspondence between the
HFGMC and the refined FE models can be observed. It should be
noted that a comparison between HFGMC and FE solutions is per-
formed by Aboudi et al. (2003) for a metal matrix composite sub-
jected to a transverse shear loading. In the latter case, however,
the FE analysis was carried out using plane strain elements with dis-
placements imposed on both vertical and horizontal boundaries of
the RUC. Consequently, this FE model did not require global itera-
tions. In the present investigation a drastically different comparison
with FE solution is performed and reported since the net traction-
free boundary conditions are achieved in all directions except in
the one where the loading is imposed. In addition, only one incre-
ment of applied loading with a small number of iterations is
employed using the new HFGMC formulation.

Next, let us consider the application of HFGMC to two-phase and
three-phase rate-dependent (viscoplastic) composites. In the former
system, the RUC consists of a circular linearly elastic fiber
(E ¼ 414 GPa and m ¼ 0:15) with relatively lower fiber volume frac-
tion of v f ¼ 0:3. The time-dependent matrix behavior is modeled
using the Bodner-Partom (Bodner, 2002) unified theory of viscoplas-
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Fig. 20. Local-global material-structure framework with the HFGMC for coup
ticity. Fig. 13 illustrates the uniaxial stress–strain relations for vari-
ous applied strain rates generated using the Bodner-Partom model
for commercially pure titanium (highly rate-dependent). The mate-
rial parameters used in the model are also listed in this figure. The
predictions of the HFGMC model is compared with highly refined
FE analysis using the ABAQUS software. The latter does not include
the Bodner-Partom model, therefore the uniaxial stress–strain
curves of Fig. 13 were used as an input to calibrate the ABAQUS FE
analysis. The effective (macroscopic) transverse stress–strain re-
sponses of the two-phase composite, predicted by the HFGMC and
FE models, are presented in Fig. 14 for two applied rates of transverse
loading: _��22 ¼ 1s�1 and 0:1s�1. Excellent correlation between the
two methods is shown for the two rates. Figs. 15 and 16 display
the spatial variations of the equivalent stress and the plastic strain
distributions, respectively, within the fiber and matrix phases.
Again, good correlation is demonstrated by the HFGMC when com-
pared to the highly refined FE analysis. It should be noted that the
color maps used in the contour plots are generated from two differ-
ent commercial codes, namely Matlab and ABAQUS.

In order to demonstrate the versatility of the HFGMC to model
multiphase viscoplastic composites, the previous RUC geometry is
now modified to include a third phase in the form four additional soft
fibers (E ¼ 12 GPa, m ¼ 0:15). These fibers are placed at the four cor-
ners of the RUC. The new volume fractions of the hard and soft fibers
are: v f ¼ 0:23 and 0.1, respectively. Fig. 17 shows the overall
response of the three-phase viscoplastic composite subject to two
transverse loading rates. Figs. 18 and 19 present the local distribu-
tions of the equivalent stress and plastic strain. This combination,
ear Structural-Material Analysis

Material point

3D brick element

3D FE Global Structural Model

x

x
x

x

x x
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nized
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led nonlinear analysis of laminated composite materials and structures.
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of multiphase composite with rate-dependent constituent behavior,
demonstrates the ability of the HFGMC to capture local and global
responses with relatively fewer number of cells.

Thus far, the new formulation of the nonlinear HFGMC has been
applied to predict the response of unidirectional polymeric and
metal matrix composites. The efficiency of this new formulation
enables the integration of HFGMC modeling framework to local-
global structural analysis. To this end, the HFGMC was integrated
with the ABAQUS (2007) general purpose implicit FE code as a
material subroutine integrated to perform a coupled hierarchical
analysis of composite materials and structures. Local-global analy-
sis has been proposed for composite materials and structures with
different hierarchical, concurrent and sub-structuring techniques,
e.g. Fish and Belsky (1995) Fish and Shek (2000), Ghosh et al.
(1995),Ghosh and Moorthy (1995) and Oden and Zohdi (1997),
among several others. The new aspect of the current proposed
multiscale modeling is the integration of the HFGMC nonlinear
formulation and the use of its ability for selective micromechanical
refinement. Fig. 20 illustrates the proposed 3D local-global nonlin-
ear analysis where a composite structure is simulated using 3D
continuum-based FE model. At each Gaussian material point in
the FE element a HFGMC is implemented with different number
L1

L1

[ 45]ns

Fig. 21. Nested multiscale finite-element analysis with HFGMC model of notched lamina
cell refinements.
of cells depending on the detailed microstructure level of model-
ing. Towards this goal, the proposed local-global modeling
approach is applied to simulate the response of a notched compos-
ite thick plate shown in Fig. 21. The plate is subjected to displace-
ment-control axial loading. The dimensions of the plate and the FE
mesh are shown in Fig. 21. Two 3D brick elements are used for the
two representative layers in the thickness direction. The HFGMC is
applied at all Gaussian integration points in the FE elements. For
most elements, the HFGMC included ðNb;NcÞ ¼ ð4;4Þ number of
cells as shown. However, the first layer of elements around the
hole (shaded area) are selected to demonstrate the ability of the
HFGMC framework for increased selective modeling refinement
by using ðNb;NcÞ ¼ ð32;32Þ for these elements. The materials prop-
erties the constituents are same as those taken in the convergence
study of the polymeric matrix composite. Fig. 22 shows the struc-
tural response of the notched plate in terms of remote stress P and
strain d=L1. The plotted symbols are the FE increments needed for
the solution to reach a total of 2% remote applied strain. As it is
well known that in this composite stacking, the predominant
response of the laminae is in their axial shear mode y1 � y2.
Fig. 23(a) and 23(b) show the distribution of the axial-shear stress
r12 and transverse stress r22, respectively, in the fiber and matrix
Investigated Location in

Refined Area

(N , N ) (32, 32)

(N , N ) (4, 4)

Moderately Refined

Micromodeling Locations

ted composite plate. The local HFGMC nonlinear micromodel is used with selective



L1 Remote Strain (%)

P= Remote Stress (MPa)

[ 45]ns

Fig. 22. Remote stress–strain of a notched composite plate.
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constituents at the end of the structural simulation and for the
investigated location point, in the element marked in Fig. 21. This
verification analysis demonstrates a new level of refined solution
capability in coupled nonlinear local-global analysis.
Fig. 23. Spatial distribution of shear and transverse stresses predicted from the
HFGMC in a hot-spot location of the notched composite plate.
5. Conclusions

A new nonlinear micromechanical formulation of the HFGMC
method is presented. This formulation facilitates an efficient
numerical integration and stress correction schemes for nonlinear
periodic multiphase composites under general multiaxial loading.
The formulation is performed using both incremental and total
stress and displacement microvariables. The incremental part
allows the introduction of new compact matrix representations
that can be employed to generate the effective tangent stiffness
of the multiphase composite. It also enables the evaluation of the
initial tangential trial deformation state in the cells. The total part
of the nonlinear formulation is used to derive the residual (error)
vector as well as the explicit form of its Jacobian. The latter are
used in a Newton–Raphson type of an iterative scheme to correct
for the trial state and satisfy both the constitutive relations in
the cells along with the micromechanical equations. Applications
are presented for nonlinearly elastic, elastoplastic and viscoplastic
composites to demonstrate the efficiency of the proposed formula-
tion for finite increments of imposed average stress or strain load-
ings. It is shown that a small number of iterations is sufficient to
yield accurate solutions. Comparisons between the HFGMC models
with relatively small number of cells with well-refined FE models
are performed to verify the accuracy of the HFGMC models. Finally,
the HFGMC formulation was implemented in a nested local-global
material-structural analysis. An example is shown on how differ-
ent nonlinear micromechanical modeling refinement in various
locations of the structure can be achieved. The proposed formula-
tion is general enough, and widens the application of the HFGMC
for the nonlinear analysis of composite materials and structures
including local effects. The generalization of the present formula-
tion of HFGMC to triply-periodic multiphase materials is a subject
for a future research.

Acknowledgement

The first author wishes to acknowledge the support of The
Kahanoff Foundation and the EU Marie Curie IRG grants.

References

ABAQUS, 2007. Theory Manual, version 6.7. Dassault Systêmes Simulia Corp.,
Providence, RI, USA.

Aboudi, J., 1991. Mechanics of Composite Materials: A Unified Micromechanical
Approach. Elsevier, Amsterdam.

Aboudi, J., Pindera, M.-J., Arnold, S.M., 1999. Higher-order theory for functionally
graded materials. Compos. Part B-Eng. 30, 777–832.

Aboudi, J., 2001. Micromechanical analysis of fully coupled electro-magneto-
thermo-tlastic multiphase composites. Smart Mater. Struct. 10, 867–877.

Aboudi, J., Pindera, M-J., Arnold, S.M., 2001. Linear thermoelastic higher-order
theory of periodic multiphase materials. J. Appl. Mech. 68, 697–707.

Aboudi, J., Pindera, M-J., Arnold, S.M., 2003. Higher-Order theory for periodic
multiphase materials with inelastic phases. Int. J. Plast. 19, 805–847.

Aboudi, J., 2004. The generalized method of cells and high-fidelity generalized
method of cells micromechanical models – a review. Mech. Adv. Mater. Struct.
11, 329–366.

Aboudi, J., 2005. Micromechanically established constitutive equations for
multiphase materials with viscoelastic–viscoplastic phases. Mech. Time-
Dependent Mater. 9, 121–145.

Aboudi, J., 2008. Thermomechanically coupled micromechanical analysis of
multiphase composites. J. Eng. Math. 61, 111–132.

Arnold, S.M., Bednarcyk, B.A., Aboudi, J., 2004. Analysis of internally cooled
structures using a high order theory. Comput. Struct. 82, 659–688.

Bednarcyk, B.A., Aboudi, J., Arnold, S.M., Sullivan, R.M., 2008. Analysis of space
shuttle external tank spray-on foam insulation with internal pore pressure. J.
Engrg. Mat. Tech. 130, 041005–041016.

Bednarcyk, B.A., Arnold, S.M., Aboudi, J., Pindera, M-J., 2004. Local field effects in
titanium matrix composites subject to fiber–matrix debonding. Int. J. Plast. 20,
1707–1737.

Bednarcyk, B.A., Yarrington, P.W., 2004. Elasto-plastic analysis of tee joints using
HOT-SMAC, NASA/CR-2004-213067.

Bednarcyk, B.A., Zhang, J., Collier, C.S., Bansal, Y., Pindera, M.-J., 2006. Analysis tools
for adhesively bonded composite joints. Part I: higher order theory. AIAA J. 44,
171–180.



2592 R. Haj-Ali, J. Aboudi / International Journal of Solids and Structures 46 (2009) 2577–2592
Bodner, S.R., 2002. Unified Plasticity for Engineering Applications. Kluwer, New
York.

Christensen, R.M., 1979. Mechanics of Composite Materials. John Wiley and Sons,
New York.

Delannay, L., Doghri, I., Pierard, O., 2007. Prediction of tensioncompression cycles in
multiphase steel using a modified incremental mean-field model. Int. J. Solids
Struct. 44, 72917306.

Doghri, I., Ouaar, A., 2003. Homogenization of two-phase elasto-plastic composite
materials and structures: Study of tangent operators, cyclic plasticity and
numerical algorithms. Int. J. Solids Struct. 40, 16811712.

Fish, J., Belsky, V., 1995. Multigrid method for periodic heterogeneous media. Part 2:
multiscale modeling and quality control in multidimensional case. Comput.
Meth. Appl. Mech. Eng. 126, 17–38.

Fish, J., Shek, K., 2000. Multiscale analysis of composite materials and structures.
Compos. Sci. Tech. 60, 2547–2556.

Gavazzi, A.C., Lagoudas, D.C., 1990. On the numerical evaluation of Eshelby’s tensor
and its application to elastoplastic fibrous composites. Comput. Mech. 7, 13–
19.

Ghosh, S., Lee, K., Moorthy, S., 1995. Multiple scale analysis of heterogeneous elastic
structures using homogenization theory and Voronoi cell finite element
method. Int. J. Solids Struct. 32, 2762.

Ghosh, S., Moorthy, S., 1995. Elastic–plastic analysis of arbitrary heterogeneous
materials with the voronoi cell finite element method. Comput. Meth. Appl.
Mech. Eng. 121, 373–409.

Haj-Ali, R.M., Kilic, M., Zureick, A-H., 2001. Three-dimensional micromechanics-
based constitutive framework for analysis of pultruded composite structures.
ASCE J. Eng. Mech. 127, 653–660.

Haj-Ali, R.M., Kilic, M., 2003. Nonlinear constitutive models for pultruded FRP
composites. Mech. Mater. 35, 791–801.
Haj-Ali, R.M., Muliana, A.H., 2004. A multi-scale constitutive formulation for the
nonlinear viscoelastic analysis of laminated composite materials and structures.
Int. J. Solids Struct. 41, 3461–3490.

Haj-Ali, R., 2008. Nested nonlinear multi-scale frameworks for the analysis of thick-
section composite materials and structures. In: Kwon, Y.W., Allen, D.H., Talreja,
R. (Eds.), Multiscale Modeling and Simulation of Composite Materials and
Structures. Springer, pp. 332–371. ISBN 978-0-387-36318-938.

Haj-Ali, R.M., 2009. Cohesive micromechanics: a new approach for progressive
damage modeling in laminated composites. Int. J. Damage Mech., in press.

Khan, A., Huang, S., 1995. Continuum Theory of Plasticity. Wiley, New York.
Lagoudas, D.C., Gavazzi, A.C., Nigam, H., 1991. Elastoplastic behavior of metal matrix

composites based on incremental plasticity and the Mori–Tanaka averaging
scheme. Comput. Mech. 8, 193–203.

Muliana, A.H., Haj-Ali, R.M., 2005. Multi-scale modeling for the long-term behavior
of FRP composite structures. AIAA J. 43, 1815–1822.

Muliana, A.H., Haj-Ali, R.M., 2008. A multi-scale framework for layered composites
with thermo-rheologically complex behaviors. Int. J. Solids Struct. 45, 2937–
2963.

Nemat-Nasser, S., Horii, M., 1993. Overall Properties of Heterogeneous Materials.
North-Holland, New-York.

Oden, J.T., Zohdi, T.I., 1997. Analysis and adaptive modeling of highly heterogeneous
elastic structures. Comput. Meth. Appl. Mech. Eng. 149, 289–301.

Paley, M., Aboudi, J., 1991. Viscoplastic bifurcation buckling of plates. AIAA J. 29,
627–632.

Paley, M., Aboudi, J., 1992. Micromechanical analysis of composites by the
generalized cells model. Mech. Mater. 14, 127–139.

Ryvkin, M., Aboudi, J., 2007. The effect of fiber loss in periodic composites. Int. J.
Solids Struct. 44, 3497–3513.

Simo, J.C., Hughes, T.J.R., 1998. Computational Inelasticity. Springer, New York.


	Nonlinear micromechanical formulation of the high fidelity generalized method of cells
	Introduction
	General formulation
	Numerical Implementation of HFGMC
	Applications
	Conclusions
	Acknowledgement
	References


