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A continuum model is presented which is capable of generating the transient electroelastic field in pie-
zoelectric composites of periodic microstructure, caused by the sudden appearance of localized defects.
These defects are simulated by associating to every one of the ten piezoelectric parameters of the constit-
uents a distinct damage variable. This procedure enables the modeling of localized cracks, soft and stiff
inclusions and cavities. As a result, the constitutive equations of the piezoelectric phases appear in a spe-
cific form that includes eigen-electromechanical field variables which represent these defects. The
method of solution is based on the combination of two distinct approach. In the first one, the represen-
tative cell method is employed according to which the periodic composite, which is discretized into sev-
eral cells, is reduced to a problem of a single cell in the discrete Fourier transform domain. The resulting
coupled elastodynamic and electric equations, initial, boundary and interfacial conditions in the trans-
form domain are solved by employing a wave propagation in piezoelectric composite analysis which
forms the second approach. The method of solution is verified by comparison with an analytical solution
for the transient response of a piezoelectric material with a semi-infinite mode III-crack. Several applica-
tions are presented for the sudden formation of cracks in homogeneous and layered piezoelectric mate-
rials which are subjected to various types of electromechanical loading, and for the sudden appearance of
a cavity. The effect of electromechanical coupling on the dynamic response is discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The utilization of elastic waves to detect crack-like and notch-
like defects and flaws is a well known tool in a non-destructive
approach for the evaluation and monitoring the integrity of com-
posites and structures, see Rose (1999), Achenbach (2000) and
Rizzo and Lanza (2007), for a monograph and two reviews. A
quantitative understanding of the response of a solid body with
defects to the sudden application of a signal (e.g., the scattering
of elastic waves by cracks, inclusions and cavities) requires the
solution of an appropriate initial-boundary value transient elastic
problem. Similarly, the non-destructive evalution of layered and
composite materials by monitoring their dynamic response re-
quires the establishment of elastic wave propagation solutions
in such materials. Thus, Saravanos and Hopkins (1996) identified
the effect of delaminations by monitoring wave damping. Conse-
quently, and as it has been mentioned by Achenbach (2000), solu-
tions to elastodynamic problems form a basic tool for the
ll rights reserved.
quantitative non-destructive monitoring, testing and damage
detectors.

Due to the existence of coupling between elastic and electric
field, piezoelectric materials form an important class of smart
materials which can be utilized for detection, actuation and sens-
ing. They can be used as adapting elements for the monitoring of
a structure by providing a response to externally applied condi-
tions, see Rao and Sunar (1994) for a survey. Some piezoelectric
materials are brittle (e.g., lead zirconate titanate (PZT) is a very
stiff and brittle piezoelectric material). Hence fracture may take
place during fabrication and service. Several types of flaws in
multilayer actuators have been described by Winzer et al.
(1989). Piezoelectric materials have been also employed for the
non-destructive monitoring and detection of delamination in
composite structures by attaching to them to the structure or
embedding them within, see Saravanos et al. (1994), Chee et al.
(1998) and Tan and Tong (2007), for example. Thus, just like elas-
todynamic problems, solutions of dynamic piezoelectric problems
should be important in the non-destructive monitoring and test-
ing when such materials are employed. Extensive discussions of
various types of damage in composite materials can be found in
Talreja and Singh (2012).

http://dx.doi.org/10.1016/j.ijsolstr.2013.04.008
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In a recent investigation, (Aboudi, 2013a), a method has been
presented for the prediction of the elastodynamic stress field in
periodically layered composite in which localized defects in the
form of a crack, inclusion, cavity or H-crack (transverse crack in a
layer together with two interfacial cracks between the adjacent
layers) exist. Due to the existence of these types of localized dam-
age, the periodicity of the composite is lost and it is not possible
anymore to analyze a repeating unit cell which represents the en-
tire composite since such a representative identity does not exist.
The method of solution was based on the combination of two dis-
tinct approach. In the first one, the representative cell method
(which in the static case was formulated by Ryvkin and Nuller
(1997)) was employed according to which the periodic composite
with its localized defects is discretized into several cells, and sub-
sequently reduced to a problem of a single cell in the discrete Fou-
rier transform domain which is a significant advantage. The
resulting elastodynamic equations, initial, boundary and interfacial
conditions in the transform domain were solved by employing a
wave propagation in composite analysis (originally formulated by
Aboudi (1987)) which forms the second approach. The accuracy
and reliability of this method of solution was verified by compari-
sons with five different cases where either analytical solutions are
available or a different method of analysis is used.

There are several investigations which concern with the analysis
of harmonic waves in piezoelectric composites (e.g., Nayfeh et al.
(1999a) and Nayfeh et al. (1999b)), and piezoelectric/piezomagnet-
ic composites (e.g., Chen et al. (2007), Pang et al. (2008) and Du et al.
(2009)). Analyses of the transient response of piezoelectric compos-
ites are frequently conducted by employing a finite element proce-
dure, see Wang et al. (2011) and references cited there.

The present investigation forms a contribution to the study of
the response to dynamic electromechanical loadings of piezoelec-
tric composites with localized defects. It is based on generalizing
the aforementioned elastodynamic analysis of Aboudi (2013a) to
incorporate the electrical effects. This is performed by coupling
the elastodynamic analysis to the presently derived one which
considers the electrical field and its dependence on the mechan-
ical deformations. Since the former analysis has been already pre-
sented in Aboudi (2013a), only the latter is discussed here and its
details are given in the Appendix. As in Aboudi (2013a), the local-
ized defects are modeled by introducing damage variables every-
one of which is associated with a piezoelectric material
parameter of the constituents. As a result, the piezoelectric con-
stitutive equations are formulated by the inclusion of terms
which involve these damage variables and subsequently repre-
senting these terms as eigen-electromechanical field. This ap-
proach has been successfully implemented by Aboudi (2013b)
in static piezoelectric/piezomagnetic deformation problems
where it has been shown that it enables the modeling of cracks,
stiff and soft inclusions as well as cavities and H-cracks. The accu-
racy of the present coupled generalization is verified by compar-
isons with the analytical solution of Li (2001) for the transient
response of a piezoelectric material with a semi-infinite mode-
III crack.

This article is organized as follows. It begins by formulating the
governing and constitutive equations, followed by the method of
solution where the representative cell method and wave propaga-
tion in piezoelectric composites are presented. The solution strat-
egy discusses the procedure for the coupling between the
elastodynamic and the electric analyses. The verification of the
method is presented in Section 4 which follows by various applica-
tions on the sudden formation of defects in the form of cracks and
cavities. The article is concluded by discussing possible generaliza-
tions of the proposed approach.
2. Governing equations

Consider a piezoelectric composite which is initially subjected
to a system of stresses r0 and electrical displacements D0. It is
assumed that at time t ¼ 0 defects of certain configurations sud-
denly appear. Fig. 1(a) shows, for example, a periodically layered
piezoelectric composites in which every layer is a piezoelectric
material. The defect may represent a crack, a notch, a cavity or
an inclusion. This figure shows that the defect appears in one of
the layers. In the absence of the defect a periodically layered
piezoelectric composite is obtained. Its effective piezoelectric
properties can be determined by a suitable micromechanical
model such as the high-fidelity generalized of cells (HFGMC)
method, (Aboudi et al., 2013).

In the absence of body forces, the fully coupled wave equations
in a piezoelectric material are given, (Auld, 1973), by the dynamic
equations

r � r ¼ q
@2u
@t2 ð1Þ

where u;r;q and t denote the mechanical displacement vector,
stress tensor, material density and time, respectively. The constitu-
tive relations of the piezoelectric material in which the poling (axis
of symmetry) is oriented in the x3-direction are given by
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In these equations, �rs denotes the elements of the mechanical
strain tensor, Er are the components of the electrical field, the terms
crs represent the components of the elastic stiffnesses and ers are the
elements of the piezoelectric tensor, The components of the small
strain tensor �rs are expressed in terms of the displacement compo-
nents ur by

�rs ¼
1
2

@ur

@xs
þ @us

@xr

� �
r; s ¼ 1;2;3 ð3Þ

The other governing equations are given by

�r�r� E ¼ l0 j
@2E
@t2 þ ers

@2u
@t2

 !
ð4Þ

where l0 and j, are magnetic permeability constant in vacuum and
the dielectric tensor, respectively. In Eq. (4), rs indicates that this
operator takes the symmetric part.

A great simplification can be achieved by adopting the quasi-
static approximation (Auld, 1973; Parton and Kudryavtsev, 1988)
which is based on the fact that the elastic waves are about five
orders of magnitude slower than the electromagnetic waves. It
follows that the magnetic effects caused by the elastic field
can be neglected. As a result, r� E ¼ 0 which follows from
Maxwell equation, and an electric potential w can be introduced
such that

E ¼ �rw ð5Þ

Hence, Eq. (4) can be replaced by

r � D ¼ 0 ð6Þ

where D is the electric displacement which is given by



Fig. 1. (a) A composite which consists of two periodic piezoelectric layers with a localized defect. The periodically layered composite is initially subjected to a system of
stresses r0

rs and electrical displacements D0
r . (b) A region 2H � 2L of the composite is divided by repeating cells labeled by ðK2;K3Þ, the size of every one of which is 2h� 2l. (c)

A characteristic cell ðK2;K3Þ in which local coordinates ðx02; x03Þ are introduced. This cell which comprises the two piezoelectric materials is discretized into Nb � Nc subcells.
(d) A typical subcell ðbcÞ in which a local system of coordinates ð�xðbÞ2 ; �xðcÞ3 Þ is introduced the origin of which is located at the center. The size of the subcell is hb � lc .
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It can be readily observed that for a monolithic material, there are
five independent stiffnesses cij, three independent piezoelectric eij

parameters and two dielectric jij constants.
Let us also define the vectors X and Y as follows:

X ¼ ½�11; �22; �33;2�23;2�13;2�12;�E1;�E2;�E3� ð8Þ

Y ¼ ½r11;r22;r33;r23;r13;r12;D1;D2;D3� ð9Þ

Consequently, Eqs. (2) and (7) can be written in the following com-
pact matrix form:
Y ¼ Z : X ð10Þ

where the square 9th-order symmetric matrix of coefficients Z has
the following form

Z ¼ C eT

e �j

� �
ð11Þ

In Eq. (11), C is the 6th-order stiffness matrix, eT denotes the
transpose of the rectangular 3 by 6 piezoelectric matrix and j
is the square dielectric matrix of order 3. Finally, initial and
boundary conditions should be included to complete the
formulation of the problem of wave propagation in piezoelectric
materials

In order to include the effects of localized defects in the consid-
ered piezoelectric materials, 10 independent damage variables
0 6 dpq 6 1; p; q ¼ 1; . . . ;9, are associated with every one of the
10 independent elements of Zpq (since for a monolithic material



Table 1
Material density and elastic properties.

Material q(kg/m3) C11(GPa) C12(GPa) C13(GPa) C33(GPa) C44(GPa)

BaTiO3 5700 166 77 78 162 43
Cadmium Selenide 5820 74.1 45.2 39.3 83.6 13.2

Table 2
Electric properties.

Material e15(C/m2) e31(C/m2) e33(C/m2) j11(10-12 C/Vm) j33(10-12 C/Vm)

BaTiO3 11.6 �4.4 18.6 11,200 12,600
Cadmium Selenide 0.138 �0.16 0.347 82.6 90.3
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there are 10 independent constants and therefore, there are 10
corresponding independent damage variables). Thus, Eq. (10) takes
the form

Yr ¼
X9

s¼1

Zrs 1� drsð ÞXs; r ¼ 1; . . . ;9 ð12Þ

As in Aboudi (2013a) and Aboudi (2013b), let us write this equation
in the form

Y ¼ Z : X � Y e ð13Þ
Fig. 2. Comparisons between the analytical and present solutions along the crack’s line
piezoelectric Cadmium Selenide material (poling in the x1-direction) that is initially su
D2 ¼ 0:01 C=m2. (a) t ¼ 1 ls, (b) t ¼ 2 ls. (c) and (d) The corresponding comparisons in
where of Y e can be considered as electro-elastic eigen-field vector
whose components are given by

Ye
r ¼

X9

s¼1

ZrsdrsXs; r ¼ 1; . . . ;9 ð14Þ

As has been shown in Aboudi (2013b), a proper selection of the 10
independent damage variables drs enables the modeling of localized
defects in the form of cracks, notches, stiff and soft inclusions and
cavities embedded in the material. For elastic isotropic materials just
two independent damage variables would be needed, c.f. Ju (1990).
caused by the sudden appearance of a semi-infinite crack x3 6 0:3 embedded in a
bjected to axial shear mechanical loading r12 ¼ 10 MPa and electric displacement
the absence of electromechanical coupling (e15 ¼ 0).



Fig. 3. The variations of the normal stress and electric displacement along the crack line caused by the sudden appearance of of a crack �0:3 6 x3=ð2lÞ 6 0:3 caused by the
application of initial field r0

22 ¼ 10MPa;D0
2 ¼ 0:01 C=m2 in piezoelectric Cadmium Selenide material. (a) and (b) Normal stress variations, (c) and (d) electric displacement

variations. (e) and (f) The time variations of the normal stress and electric displacement at the closest point ahead of the tip in the coupled and uncoupled cases.
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For cracks, notches and cavities, the 5 independent elements
c11; c12; c13; c33; c44 in Eq. (2), as well as the 3 constants e31; e33; e15,
and the 2 coefficients j11;j33 in Eq. (7) are set to be zero. Hence
we set drs ¼ 1 for the damage variables which correspond to these
10 independent elements. Therefore the introduction of the dam-
age variables drs in Eq. 13,14 forms a mean to deteriorate the values
of these 10 elements to zero for the modeling of a region that is
occupied by a crack, notch or cavity.

3. Method of solution

The method of solution of the problems described above is
based on the combination of the representative cell method which
was originally presented by Ryvkin and Nuller (1997) in the
elastostatic case, and the analysis of wave propagation in elastic
composites, (Aboudi et al., 2013). The latter has been recently ex-
tended by Aboudi (2013a) to accommodate the initial stresses
and the eigen-stresses. Presently, this theory needs to be further
generalized to incorporate the coupled electrical effects of the pie-
zoelectric constituents.

3.1. The representative cell method

According to the representative cell method (not to be confused
with the representative volume element (RVE) concept which
obviously does not exist in composites with localized defects that
are considered in the present investigation) a rectangular region
�H 6 x2 6 H;�L 6 x3 6 L of the periodically layered piezoelectric
composite is considered which includes the localized damaged re-
gion, see Fig. 1(b). This region is divided into ð2M2 þ 1Þð2M3 þ 1Þ
cells (Fig. 1(b) is shown for M2 ¼ M3 ¼ 2). Every cell is labeled by
the pair ðK2;K3Þ with K2 ¼ �M2; . . . ;M2 and K3 ¼ �M3; . . . ;M3. In
each cell, local coordinates ðx02; x03Þ are introduced whose origins
are located at its center, Fig. 1(c).

The governing Eqs. (1) and (6) of the material within cell
ðK2;K3Þ take the form



Fig. 4. The variations of the transverse shear stress and normal electric displacement along the crack line caused by the sudden appearance of of a crack �0:3 6 x3=ð2lÞ 6 0:3
caused by the application of initial field r0

12 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2 in piezoelectric Cadmium Selenide material. (a) and (b) Transverse shear stress variations, (c) and (d)

normal electric displacement variations. (e) and (f) The time variations of the transverse shear stress and normal electric displacement at the closest point ahead of the tip in
the coupled and uncoupled cases.
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rðK2 ;K3Þ
jk;k ¼ q

d2

dt2 uðK2 ;K3Þ
j ; j; k ¼ 1;2;3 ð15Þ

DðK2 ;K3Þ
j;j ¼ 0; j ¼ 1;2;3 ð16Þ

The constitutive Eqs. (10) in the cell ðK2;K3Þ can be written as

Y ðK2 ;K3Þ
r ¼

X9

s¼1

ZrsX
ðK2 ;K3Þ
s � YeðK2 ;K3Þ

r ; r ¼ 1; . . . ;9 ð17Þ

where the components of the eigen-electroelastic field in this cell
are

YeðK2 ;K3Þ
r ¼

X9

s¼1

drsZrsX
ðK2 ;K3Þ
s ; r ¼ 1; . . . ;9 ð18Þ
In order to formulate the continuity conditions that the various
variables should fulfill, let us define the vectors V ðK2 ;K3Þ

m :

V ðK2 ;K3Þ
m ¼ um1;um2;um3;rm1;rm2;rm3;w;Dm½ �ðK2 ;K3Þ; m ¼ 2;3

ð19Þ

These vectors assemble the time-dependent components of the dis-

placements uðK2 ;K3Þ
m1 ; uðK2 ;K3Þ

m2 ; uðK2 ;K3Þ
m3 , traction components rðK2 ;K3Þ

m1 ;

rðK2 ;K3Þ
m2 ;rðK2 ;K3Þ

m3 on a plane perpendicular to the xm-axis at the cell

ðK2;K3Þ, as well as the electric potential wðK2 ;K3Þ and the electric dis-
placements DðK2 ;K3Þ

m acting on these planes.
The continuity of displacements, tractions, electric potential

and displacements between adjacent cells should be imposed.
Thus,



Fig. 5. The piezoelectric Cadmium Selenide material is subjected to a combined electromechanical normal loading: r0
22 ¼ 10 MPa;D0

2 ¼ 0:01 C=m2. As a result, two interacting
cracks appear which are characterized by: (a)-(b) 2a=ð2lÞ ¼ 0:4; d=ð2lÞ ¼ 0:2, (c) and (d) 2a=ð2lÞ ¼ 0:3;d=ð2lÞ ¼ 0:4, (e) and (f) 2a=ð2lÞ ¼ 0:2; d=ð2lÞ ¼ 0:6. The figures show the
variations at t ¼ 1 and 2 ls of the normal stresses along the line of the cracks.
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V2ðh; x03; tÞ
� �ðK2 ;K3Þ � V2ð�h; x03; tÞ

� �ðK2þ1;K3Þ ¼ 0 ð20Þ

where K2 ¼ �M2; . . . ;M2 � 1;K3 ¼ �M3; . . . ;M3;�l 6 x03 6 l, and

V3ðx02; l; tÞ
� �ðK2 ;K3Þ � V3ðx02;�l; tÞ

� �ðK2 ;K3þ1Þ ¼ 0 ð21Þ

where K2 ¼ �M2; . . . ;M2;K3 ¼ �M3; . . . ;M3 � 1;�h 6 x02 6 h.
In the following, the boundary conditions that specify the elec-

tro-elastic field at the opposite sides x2 ¼ �H; x3 ¼ �L of the rect-
angle of Fig. 1(b) are presented. It is assumed that these
boundaries are sufficiently far away from the localized defects so
that the field there can be assumed to be periodic. Thus at any in-
stant, the tractions at the opposite sides of the rectangular domain
are equal:
rðM2 ;K3Þ
2j ðh; x03; tÞ � rð�M2 ;K3Þ

2j ð�h; x03; tÞ ¼ 0;

K3 ¼ �M3; . . . ;M3; j ¼ 1;2;3; �l 6 x03 6 l ð22Þ

and

rðK2 ;M3Þ
3j ðx02; l; tÞ � rðK2 ;�M3Þ

3j ðx02;�l; tÞ ¼ 0;

K2 ¼ �M2; . . . ;M2; j ¼ 1;2;3; �h 6 x02 6 h ð23Þ

Similarly, the electrical displacement at the opposite sides of the
rectangular domain should be equal. Thus

DðM2 ;K3Þ
2 ðh; x03; tÞ � Dð�M2 ;K3Þ

2 ð�h; x03; tÞ ¼ 0;
K3 ¼ �M3; . . . ;M3; �l 6 x03 6 l ð24Þ



Fig. 6. Same as Fig. 5 but for the variations of the electric displacements.
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and

DðK2 ;M3Þ
3 ðx02; l; tÞ � DðK2 ;�M3Þ

3 ðx02;�l; tÞ ¼ 0;
K2 ¼ �M2; . . . ;M2; �h 6 x02 6 h ð25Þ

In the presence of initial system of stresses r0
jk and electrical

displacements D0
j , the mechanical displacements and electric po-

tential at the opposite sides �H and �L are related by

uðM2 ;K3Þðh; x03; tÞ � uð�M2 ;K3Þð�h; x03; tÞ ¼ 0;
K3 ¼ �M3; . . . ;M3; �l 6 x03 6 l ð26Þ

uðK2 ;M3Þðx02; l; tÞ � uðK2 ;�M3Þðx02;�l; tÞ ¼ 0;
K2 ¼ �M2; . . . ;M2; �h 6 x02 6 h ð27Þ
wðM2 ;K3Þðh; x03; tÞ � wð�M2 ;K3Þð�h; x03; tÞ ¼ 0;
K3 ¼ �M3; . . . ;M3; �l 6 x03 6 l ð28Þ

wðK2 ;M3Þðx02; l; tÞ � wðK2 ;�M3Þðx02;�l; tÞ ¼ 0;
K2 ¼ �M2; . . . ;M2; �h 6 x02 6 h ð29Þ

The double discrete Fourier of the displacement vector uðK2 ;K3Þ

(for example) is defined by

ûðx02; x03;/p;/q; tÞ ¼
XM2

K2¼�M2

XM3

K3¼�M3

uðK2 ;K3Þðx02; x03; tÞ

� exp iðK2/p þ K3/qÞ
� �

ð30Þ

where



Fig. 7. A piezoelectric BaTiO3/Cadmium Selenide layered composite is subjected to a combined electromechanical normal loading: r0
22 ¼ 10 MPa;D0

2 ¼ 0:01 C=m2. The
variations of the (a) and (b) normal stresses, and (c)-(d) electrical displacements along x3 at x2 ¼ 0 caused by the sudden breakage of a single Cadmium Selenide layer at t ¼ 0.
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/p ¼
2pp

2M2 þ 1
; p ¼ 0;�1;�2; . . . ;�M2; /q ¼

2pq
2M3 þ 1

;

q ¼ 0;�1;�2; . . . ;�M3;

The application of this transform to the boundary problem
(15)–(21) for the rectangular domain �H < x2 < H;�L < x3 < L, di-
vided into ð2M2 þ 1Þð2M3 þ 1Þ cells, converts it to the problem for
the single representative cell �h < x02 < h;�l < x03 < l with respect
to the complex valued transforms. The governing electro-elastic
and constitutive equations have the form

r̂jk;k ¼ q
d2

dt2 ûj; j; k ¼ 1;2;3 ð31Þ

D̂j;j ¼ 0; j ¼ 1;2;3 ð32Þ

and

Ŷr ¼
X9

s¼1

Zrs
bXs � Ŷe

r ; r ¼ 1; . . . ;9 ð33Þ

where the components of the transformed eigen-field vector com-
ponents are given by

Ŷe
r ¼

X9

s¼1

Zrsdrs
bXs ð34Þ

The conditions relating the opposite sides of the representative
cell, Eq. (22)–(29), take the form

r̂2jðh; x03; tÞ ¼ expð�i/pÞr̂2jð�h; x03; tÞ; �l 6 x03 6 l;

j ¼ 1;2;3 ð35Þ

ûðh; x03; tÞ ¼ expð�i/pÞûð�h; x03; tÞ; �l 6 x03 6 l ð36Þ
D̂2ðh; x03; tÞ ¼ expð�i/pÞD̂2ð�h; x03; tÞ; �l 6 x03 6 l; ð37Þ

ŵðh; x03; tÞ ¼ expð�i/pÞŵð�h; x03; tÞ; �l 6 x03 6 l ð38Þ

and

r̂3jðx02; l; tÞ ¼ expð�i/qÞr̂3jðx02;�l; tÞ; �h 6 x02 6 h;

j ¼ 1;2;3 ð39Þ

ûðx02; l; tÞ ¼ expð�i/qÞûðx02;�l; tÞ; �h 6 x02 6 h ð40Þ

D̂3ðx02; l; tÞ ¼ expð�i/qÞD̂3ðx02;�l; tÞ; �h 6 x02 6 h; ð41Þ

ŵðx02; l; tÞ ¼ expð�i/qÞŵðx02;�l; tÞ; �h 6 x02 6 h ð42Þ

where p ¼ �M2; . . . ;M2; q ¼ �M3; . . . ;M3.

3.2. Wave propagation in piezoelectric composites analysis

The representative cell initial-boundary value problem (31)–
(42), formulated in the transform domain where the identity of
the cells disappeared, is solved by employing the analysis for wave
propagation in piezoelectric composite materials. For perfectly
elastic composites this analysis was is described in Aboudi et al.
(2013) and it has been modified by Aboudi (2013a) to incorporate
the effects of initial stresses and eigen-stresses. Presently it is nec-
essary to generalize this analysis to incorporate the electrical ef-
fects that exists due to the piezoelectric behavior of the phases.

According to this theory, the domain �h 6 x02 6 h;�l 6 x03 6 l
(the representative cell) is divided into several rectangular subcells,
see Fig. 1(c). The transformed time-dependent mechanical



Fig. 8. A piezoelectric BaTiO3/Cadmium Selenide layered composite is subjected to a combined axial shear mechanical and normal electrical loading:
r0

23 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2. The variations of the (a) and (b) axial shear stresses, and (c)-(d) normal electrical displacements along x3 at x2 ¼ 0 caused by the sudden

breakage of a single Cadmium Selenide layer at t ¼ 0.
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displacements and electric potential are expanded into a second-
order polynomials, and the transformed governing equations,
interfacial and boundary conditions are imposed in the average
(integral) sense. As a result, a system of ordinary differential equa-
tions is obtained whose solution determine at any instant the field
variables in the transform domain. The analysis for the inclusion of
the electrical field (which complements the elastodynamic one pre-
sented in Aboudi (2013a)) is described the Appendix. As a result of
the imposed initial stress r0 and electric displacement D0, this anal-
ysis requires the knowledge of the resulting strains �0 and electric
field E0 in the phases caused by these externally applied loadings.

1. For a homogeneous piezoelectric material with localized defects,
�0 and E0 are simply given by the inversion of the constitutive
Eqs. (2) and (7). From these relations the expressions for �̂0 and
Ê0 in the transform domain can be readily established.

2. For a periodically layered piezoelectric composite, the resulting
normal strains and electric field E0Þ

3 in the two layers (labeled by
f and m) are determined from the following conditions (see
Fig. 1(a)).
�0ðf Þ
11 ¼ �

0ðmÞ
11

�0ðf Þ
22 ¼ �

0ðmÞ
22

r0ðf Þ
33 ¼ r0ðmÞ

33 ¼ r0
33

tf r0ðf Þ
11 þ tmr0ðmÞ

11 ¼ ðtf þ tmÞr0
11

tf r0ðf Þ
22 þ tmr0ðmÞ

22 ¼ ðtf þ tmÞr0
22

D0ðf Þ
3 ¼ D0ðmÞ

3 ¼ D0
33

ð43Þ
These relations form a system of 8 equations in the unknown
normal strains and electric field E0ðf Þ

3 ; E0ðmÞ
3 in the layers. In

addition,
r0ðf Þ
23 ¼ r0ðmÞ

23 ¼ r0
23

E0ðf Þ
2 ¼ E0ðmÞ

2

tf D0ðf Þ
2 þ tmD0ðmÞ

2 ¼ ðtf þ tmÞD0
2

ð44Þ
These form a system of 4 equations in the unknown axial shear
strains �0

23 and electric field E0
2 in the layers. Finally,
r0ðf Þ
13 ¼ r0ðmÞ

13 ¼ r0
13

E0ðf Þ
1 ¼ E0ðmÞ

1

tf D0ðf Þ
1 þ tmD0ðmÞ

1 ¼ ðtf þ tmÞD0
1

ð45Þ
which forms a system of 4 equations in the unknown axial shear
strains �0

13 and electric field E0
1 in the layers. As to the transverse

shear strains �0ðf Þ
12 and �0ðmÞ

12 in the layers, they can be readily deter-
mined from
�0ðf Þ
12 ¼ �

0ðmÞ
12 ¼ r0

12

2G�T
ð46Þ
where G�T ¼ ðtf C
ðf Þ
66 þ tmCðmÞ66 Þ=ðtf þ tmÞ, being the effective transverse

shear modulus of the composite. Thus from these relations the
expressions for �̂0 and Ê0 in the layers in the transform domain
can be readily determined.
It is possible to represent the resulting induced strains and electric
field in the layers in the form



Fig. 9. A piezoelectric BaTiO3/Cadmium Selenide layered composite is subjected to a combined transverse shear mechanical and normal electrical loading:
r0

12 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2. The variations of the (a) and (b) transverse shear stresses, and (c) and (d) normal electrical displacements along x3 at x2 ¼ 0 caused by the

sudden breakage of a single Cadmium Selenide layer at t ¼ 0.
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�0ðpÞ

E0ðpÞ

( )
¼ AðpÞ

r0

D0

( )
; p ¼ f ;m ð47Þ
where AðpÞ is referred to as the concentration tensors of the piezo-
electric layered composite. They relate the induced strains and
electric field layers p ¼ f ;m to the externally applied stresses
and electric displacements on the composite. These tensors can
be easily related to the conventional strain and stress concentra-
tion tensors.
3. For fiber-reinforced piezoelectric composites that are subjected

to an initial system of stresses and electrical displacements, the
resulting strains and electric field in the constituents can be
determined by employing a micromechanical analysis (e.g.,
Aboudi (2001)) that provides the concentration tensors AðphaseÞ

which relate the strains and electrical field in the fiber and
matrix phases to the externally applied stresses and electrical
displacements.

3.3. Solution procedure

The time-dependent electro-mechanical field response is deter-
mined as follows. Assume that all the electro-mechanical field vari-
ables at time t have been determined.

1. The mechanical field variables at time t þ Dt (where Dt is a time
increment) are determined by integrating the evolution equa-
tions (A.54) of Aboudi (2013a) (see this reference for more
details about the construction of these equations in which the
electric effects should be incorporated).
2. With the established mechanical field, the electrical field vari-
ables are obtained by solving the algebraic system of Eq.
(A.29) at this time.

3. Once the solution for all electro-mechanical field variables in
the transform domain at time t þ Dt have been established,
the actual electro-elastic field can be readily determined at
any point in cell ðK2;K3Þ of the considered rectangular region
�H 6 x2 6 H;�L 6 x3 6 L by the inverse transform formula.
For the mechanical displacements, for example, this formula
is given by:
uðK2 ;K3Þðx02; x03; tÞ ¼
1

ð2M2 þ 1Þð2M3 þ 1Þ

�
XM2

p¼�M2

XM3

q¼�M3

ûðx02; x03;/p;/q; tÞ

� exp �iðK2/p þ K3/qÞ
� �

ð48Þ
4. The right-hand-side vector Nðt þ DtÞ of Eq. (A.29) involves the
eigen-electrical field Deðt þ DtÞ which are not known. Hence
an iterative procedure is required according to which the 2nd
and 3rd step are repeated until a convergent solution is
achieved.

The verification of the procedure and results that are pre-
sented in the following were carried out by discretizing the rep-
resentative cell, Fig. 1(c), into Nb ¼ Nc ¼ 50 subcells. These
results are given for BaTiO3 and Cademium Selenide piezoelectric
materials whose properties are given in Tables 1 and 2, (Qin,



Fig. 10. Field distribution at t ¼ 1 ls in the plane �1 6 x2=ð2hÞ 6 1;�1 6 x3=ð2lÞ 6 1, caused by the sudden formation of a cavity in an initially loaded Cadmium Selenide
piezoelectric material by a combined electromechanical stress r0

22 ¼ 10 MPa and electrical displacement D0
2 ¼ 0:01 C=m2. (a) The distribution of the normal stress r22=r0

22, (b)
the distribution of the normal stress r22=r0

22 in the corresponding uncoupled case, (c) the distribution of the normal electrical displacement D2=D0
2.
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2001). The electromechanical loading is characterized by a stress
of 10 MPa and electric displacement of 0.01 C/m2. These values
are within the range mentioned by Pak (1992) and Sosa
(1991). It should be noted that except in the Verification section
where the poling of the piezoelectric material is oriented in the
x1-direction, in all other cases the poling is directed in the
x3-direction. Finally, it should be remarked that in all cases pre-
sented in the following in which the responses to the sudden
appearance of cracks are dealt with, impermeable boundary con-
ditions have been imposed. Impermeable boundary conditions
assume that the upper and lower surfaces of the crack are free
of surface tractions and surface charge, cf. Pak (1990) for exam-
ple. This author presented in a static problem an analytical solu-
tion of a crack under anti-plane mechanical loading in a
piezoelectric material, and also discussed the issue of boundary
conditions on piezoelectric crack surfaces. The present method
however can be also applied in the cases of permeable boundary
conditions. This has been demonstrated by Aboudi (2013b) in
the static cases. As mentioned previously, the present approach
ultimately employs a discretization procedure, hence it should
not be expected to yield a mathematical singularity at the tip
of the cracks.
4. Verification

In the elastic case, (Aboudi, 2013a), it was possible to verify the
proposed analysis of wave propagation in periodic composites with
a localized defect by comparisons with analytical solutions for the
sudden appearance of cracks in Mode I, (Baker, 1962), and III,
(Freund, 1990), deformation; the sudden formation of a cavity,
(Miklowitz, 1960); and the diffraction of horizontally shear waves
in a material by a semi-infinite crack, (Achenbach, 1973). In the ab-
sence of electro-mechanical coupling (ers ¼ 0), these verifications
are valid of course here too. In the present electro-mechanical case,
an analytical solution is available for the transient response of a
piezoelectric material with a semi-infinite mode-III crack to im-
pact, (Li, 2001). This analytical solution was established for a piezo-
electric material whose poling (axis of symmetry) is oriented in the
x1-direction and with the crack’s leading edges parallel to the pol-
ing direction. Hence Eq. (2) and (7) are given in the present case
(only) by
r12 ¼ 2c66�12 � e15E2; r13 ¼ 2c66�13 � e15E3;

D2 ¼ 2e15�12 þ j11E2; D3 ¼ 2e15�13 þ j11E3
ð49Þ



Fig. 11. Field distribution at t ¼ 1 ls in the plane �1 6 x2=ð2hÞ 6 1;�1 6 x3=ð2lÞ 6 1, caused by the sudden formation of a cavity in an initially loaded Cadmium Selenide
piezoelectric material by a combined electromechanical stress r0

33 ¼ 10 MPa and electrical displacement D0
3 ¼ 0:01 C=m2. (a) The distribution of the normal stress r33=r0

33, (b)
the distribution of the normal stress r33=r0

33 in the corresponding uncoupled case, (c) the distribution of the normal electrical displacement D3=D0
3.
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Consider a semi-infinite crack x3 6 0 that is impacted by a concen-
trated combined electro-mechanical loadings located at x3 ¼ �b
which are given by

r12ðx2 ¼ 0; x3; tÞ ¼ �Pdðx3 þ bÞ; D2ðx2 ¼ 0; x3; tÞ
¼ �Qdðx3 þ bÞ; t > 0 ð50Þ

where P and Q are constants and dð:Þ is the Dirac delta function. The
transient strain response along the crack line is given by

�12ðx2 ¼ 0; x3; tÞ ¼
j11P þ e15Q

2ðc66j11 þ e2
15Þ

1
pðx3 þ bÞ

ffiffiffiffiffi
b
x3

s
; 0 < x3 < cst � b

�12ðx2 ¼ 0; x3; tÞ ¼ 0; x3 > cst � b

ð51Þ

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc66 þ e2

15=j11Þ=q
q

is the shear wave velocity in the pie-
zoelectric material. This strain component vanishes when
x3 > cst � b since at these locations shear waves do no arrive.

This solution can be employed as a Green’s function for this
semi-infinite crack, but impacted this time by the combined load-
ing (50) along its entire surface x3 6 0. Since the strains at point
ð0; x3Þ will be influenced by all loadings from b ¼ 0 to
b ¼ cst � x3, the resulting response is given by integrating Eq.
(51) with respect to b from b ¼ 0 to b ¼ cst � x3. This yields, (Li,
2001):

�12ðx2 ¼ 0; x3; tÞ

¼ j11P þ e15Q
pðc66j11 þ e2

15Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cst � x3

x3

r
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cst � x3

x3

r� �
ð52Þ

In Fig. 2(a) and (b), comparisons between this analytical and pres-
ent solution approach for the response along the crack line to the
sudden appearance of a semi-infinite crack x3=ð2lÞ 6 0:3 in Cad-
mium Selenide caused by initially applied stress r0

12 ¼ 10MPa and
electric displacement D0

2 ¼ 0:01 C/m2 (which corresponds to the
values of P and Q, respectively) are shown at t ¼ 1 and t ¼ 2 ls.
The resulting initial strain and electric field are: �0

12 ¼ 1%;

E0
2 ¼ 1:19 V/m. Good agreement between the analytical solution

(51) (which exhibits of course a singularity at the crack’s tip), to
which the far-field has been superimposed to obtain traction and
electrical displacement free surfaces, and the present approach
can be observed. In Fig. 2(c) and (d), the same comparisons are gi-
ven in the uncoupled case (i.e., e15 ¼ 0). Here the applied initially
applied loading results in �0

12 ¼ 0:04%; E0
2 ¼ 1:23 V/m. The lower



Fig. 12. Field distribution at t ¼ 1 ls in the plane �1 6 x2=ð2hÞ 6 1;�1 6 x3=ð2lÞ 6 1, caused by the sudden formation of a cavity in an initially loaded Cadmium Selenide
piezoelectric material by a combined electromechanical stress r0

23 ¼ 10 MPa and electrical displacement D0
2 ¼ 0:01 C/m2. (a) The distribution of the axial shear stress r23=r0

23,
(b) the corresponding distribution in the uncoupled case.
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values of shear stresses at the closest point to the crack’s tip in the
absence of coupling as compared with the coupled case should be
noted.
5. Applications

5.1. The sudden formation of a crack caused by combined initial
electromechanical loadings

Consider a crack of length 2a=ð2lÞ ¼ 0:6, extending along
�0:3 6 x3=ð2lÞ 6 0:3, embedded in Cadmium Selenide piezoelectric
material. This material is initially subjected to a combined normal
loading r0

22 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2. The leading edge of the

crack extends in the x1-direction normal to the poling. The result-
ing non-vanishing initial strains and electric field are: �0

11 ¼
�0:01%; �0

22 ¼ 0:02%; �0
33 ¼ �0:005%; �0

23 ¼ 0:06%; E0
2 ¼ 1:2 V=m;

E0
3 ¼ 0:004 V=m. In the uncoupled case the same order of magni-

tudes of strains is obtained, but with �0
23 ¼ E0

3 ¼ 0. Thus, additional
field components emerge caused by the electromechanical cou-
pling. Fig. 3(a)–(d) exhibit the resulting normal stress and electrical
Fig. 13. Field distribution at t ¼ 1 ls in the plane �1 6 x2=ð2hÞ 6 1;�1 6 x3=ð2lÞ 6 1, ca
piezoelectric material by a combined electromechanical stress r0

23 ¼ 10 MPa and electrica
(b) the corresponding distribution in the uncoupled case.
displacements along the crack line caused by the application of this
combined electromechanical loading at t ¼ 1 and t ¼ 2 ls. The ef-
fect of coupling on the resulting field in this case appears to be
inappreciable. This is exhibited in Fig. 3(e) and (f) by recording
the time variations of normal stress and electrical displacements
at the closest point ahead of the crack’s tip. The effect of coupling,
on the other hand, can be detected by examining the axial shear
component r23. It turns out that at t ¼ 2 ls;r23=r0

22 varies be-
tween �1:8 MPa and 2 MPa in the coupled case as against
�0:8 MPa to 0:8 MPa in the uncoupled case. Hence this component
forms a good indicator for the existence of coupling. In contrast,
identical variations of the electrical displacement component
�2:7 C=m2

6 D3=D0
2 6 2:7 C=m2 are observed at t ¼ 2 ls. This is

due to the small induced strains which do not affect the electric
field under these two circumstances.

Next, consider the case when the Cadmium Selenide piezoelec-
tric material is initially loaded by r0

12 ¼ 10 MPa (transverse shear)
and D0

2 ¼ 0:01 C/m2 which causes the appearance of a crack extend-
ing along �0:3 6 x3=ð2lÞ 6 0:3. Here, the non-vanishing field
components are: �0

12 ¼ 0:03%; �0
23 ¼ 0:06%; E0

2 ¼ 1:2 V/m. In the
used by the sudden formation of a cavity in an initially loaded Cadmium Selenide
l displacement D0

3 ¼ 0:01 C=m2. (a) The distribution of the axial shear stress r23=r0
23,
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uncoupled case on the other hand: �0
23 ¼ 0. Fig. 4(a)–(d) exhibit the

shear stress and normal electric displacement along the crack’s line
at t ¼ 1 and t ¼ 2 ls. Similarly Fig. 4(e) and (f) show a comparison
between the latter temporal field component variations at the clos-
est point ahead of the crack’s tip obtained in the coupled and
uncoupled cases. Here too, the effect of the electromechanical cou-
pling the stress component r12 and electric components D2;D3 is
negligible. But its effect on the induced normal and axial
shear stress components r22 and r23 is tremendous. Here
at t ¼ 2 ls;�1:3 MPa 6 r22=r0

12 6 1:4 MPa and �1:7 MPa 6
r23=r0

12 6 2 MPa in the coupled case, whereas r22 ¼ 0 and r23 ¼ 0
in the absence of coupling.

Finally, we consider the Cadmium Selenide piezoelectric
material which is initially loaded by r0

22 ¼ 10 MPa and
D0

2 ¼ 0:01 C=m2. It is assumed that this loading causes the
creation of two interacting cracks as shown in the inset to
Fig. 5(a). Here too, the two cracks leading edges are in the
perpendicular to the poling x3-direction. Three cases are
considered in which the crack’s length and distances
between the tips are: 2a=ð2lÞ ¼ 0:4; d=ð2lÞ ¼ 0:2; 2a=ð2lÞ ¼ 0:3;
d=ð2lÞ ¼ 0:4, and 2a=ð2lÞ ¼ 0:2; d=ð2lÞ ¼ 0:6. The resulting nor-
mal stress and electric displacement along the crack’s line
are shown in Fig. 5 and 6 at time t ¼ 1 and t ¼ 2 ls. The ef-
fect on the resulting field caused by the formation of the two
cracks is clearly shown by the graphs of these figures.

5.2. Electromechanically initially loaded BaTiO3/Cadmium Selenide
layered composite: the effect of the sudden breakage of a single layer

Consider a periodically layered BaTiO3/Cadmium Selenide com-
posite that is subjected to initial combined electromechanical load-
ings, see Fig. 1(a). The layers are of equal widths tf ¼ tm where
tf þ tm ¼ 2l. Suppose that at time t ¼ 0 a single Cadmium Selenide
layer has been suddenly broken as a result of which the transient
response is sought. The length of the crack is 2a ¼ tm.

In Fig. 7–9 the transient behavior of the stresses and electrical
displacements are shown along the crack’s line for the following
initial types of combined loadings: r0

22 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2

(normal loading); r0
23 ¼ 10 MPa;D0

2 ¼ 0:01 C=m2 (axial shear
mechanical loading); and r0

12 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2 (trans-

verse shear mechanical loading), respectively, at two instances:
t ¼ 0:5 and 1 ls. As in the previous cases, the electrical displace-
ments in the vicinity of the crack maintain (unlike the stresses)
their value and do not increase with time. The effect of electrome-
chanical coupling on the induced stress components has been also
investigated. It turns out that in all these three types of loading this
effect is not pronounced. Thus the induced axial shear stress r23 in
both the normal loading and transverse shear mechanical loading
cases, as well as the induced normal stress r22 in transverse shear
mechanical loading case, were either not sensitive to the coupling
or negligibly small.

5.3. The sudden formation of a cavity caused by combined initial
electromechanical loadings

As discussed, the effect of the electromechanical coupling in all
the previously examined cases with cracks was quite minor. Pres-
ently, we consider the sudden formation at t ¼ 0 of a circular cavity
in Cadmium Selenide piezoelectric material which was initially
loaded by a combined electromechanical loading. The radius of
the cavity is R=ð2lÞ ¼ 0:282 which forms an area of 0:25=ð2lÞ2. As
will be shown, the effect of electromechanical coupling in the
present case is significant. We start by applying the initial
electromechanical normal loading r0

22 ¼ 10 MPa;D0
2 ¼ 0:01 C=m2

perpendicular to the x3 poling direction. Fig. 10(a) shows the
stress r22=r0

22 distribution at time t ¼ 1 ls in the plane
�1 6 x2=ð2hÞ 6 1;�1 6 x3=ð2lÞ 6 1 caused the sudden formation
of the cavity. The corresponding uncoupled case (ers ¼ 0) is shown
in Fig. 10(b). It can be readily observed that the effect of coupling is
significant. Actually, the distribution of the stresses in Fig. 10(b) are
limited in the range 0 6 r22=r0

22 6 1:5 but the scale has been kept
to confirm with that of Fig. 10(a). This well indicates the severity of
the coupling effects. Finally, Fig. 10(c) exhibits the electric dis-
placement distribution D2=D0

2. Here the effect of the coupling is
negligible which implies that the strains are too small to affect
the electric field.

The next case of a sudden cavity formation is when the piezo-
electric material is initially loaded by r0

33 ¼ 10 MPa;
D0

3 ¼ 0:01 C=m2 in the other normal direction which is parallel to
the poling direction. Here the stress r33=r0

33 variations are shown
in Fig. 11(a) and (b) in the coupled and uncoupled case at
t ¼ 1 ls. As in the previous case, the effect of coupling is remark-
able. The electric displacement distribution D3=D0

3 is shown in
Fig. 11(c) which is also not sensitive whether coupling exists or not.

Fig. 12(a) and (b) exhibit the response to the cavity formation at
t ¼ 1 ls when the Cadmium Selenide material is initially loaded by
r0

23 ¼ 10 MPa (axial shear) and D0
2 ¼ 0:01 C=m2 in the coupled and

uncoupled cases, respectively. In the latter case the stress actually
varies in the range 0 6 r23=r0

23 6 1:1, but here too it was scaled to
confirm with the coupled case of Fig. 12(a). The effect of coupling is
clearly noticed. As to the electric displacement distribution D2=D0

2,
it is identical to the one shown in Fig. 10(c).

The final illustration of the effect of electromechanical coupling
is exhibited by Fig. 13(a) and (b) at t ¼ 1 ls in the coupled and
uncoupled case, respectively. The initial loading is (as in the previ-
ous case): r0

23 ¼ 10 MPa (axial shear) but combined with
D0

3 ¼ 0:01 C=m2 (i.e., in the poling direction). In addition to the ef-
fect of coupling which is illustrated by comparing Fig. 13(a) and
(b), it is interesting to observe by comparing Fig. 12(a) with
Fig. 13(a) the dramatic effect of the applied electrical displacement
direction with respect to the poling direction. The electric displace-
ment distribution D3=D0

3 in the present loading case is identical to
the one shown in Fig. 11(c).

The formation of a cavity caused by an initially applied trans-
verse shear mechanical loading r0

12 accompanied by an applied
an electrical displacement D0

2 have been also examined. It turns
out that the coupled case is quite identical to the uncoupled one.
Thus the electromechanical coupling for such loading is
inappreciable.
6. Conclusions

A theory for the simulation of the transient response of piezo-
electric composites of periodic microstructure with localized de-
fects has been presented. It forms a continuum theory which
couples between an elastodynamic model that has been previously
derived and the presently offered method for the treatment of elec-
tric field which depends on the mechanical deformations. The de-
fects may represent cracks (one or several interacting cracks),
notches, stiff and soft inclusions as well as cavities, which due to
their localization, the periodicity of the composite’s microstructure
is lost. The effects of these defects are represented in the constitu-
tive equations by eigen-electromechanical variables. The derived
continuum theory has been verified by comparison with an analyt-
ical solution, and application were given for the sudden formation
of cracks and cavities under various types of loading. The pro-
nounced effect of electromechanical coupling has been especially
illustrated in the sudden formation of cavities. In these applica-
tions, the surfaces of the cracks and cavities were assumed to be
electrically impermeable, namely, the tractions and normal electric
displacement componet there are zero. Permeable solutions how-
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ever can be generated by a proper selection of the damage
variables.

It is worth mentioning that the present article has been con-
fined to the analysis of the sudden formation of defects but, as
has been demonstrated in Aboudi (2013a), it can be extended
and applied to obtain the response of piezoelectric composites
with localized defects to impulsive electromechanical loadings ap-
plied on the boundaries.

Since some piezoelectric materials are brittle, it should be pos-
sible to extend the present analysis to the important situation
where transverse cracks appear in a cross-ply piezoelectric lami-
nate (where each layer is a piezoelectric material which effec-
tively represents a unidirectional piezoelectric composite. The
effective properties can be determined either by a micromechan-
ical analysis or measurements). Under a quasi-static tensile load-
ing along the axial (0-degree) direction, these transverse cracks
slightly debond the 0=90 interfaces and might be arrested, but
further intense loading generates one or several H-cracks (trans-
verse cracks together with interfacial cracks between the adjacent
layers). Finally, the present theory can be also extended to incor-
porate the magnetic effects in electro-magneto-elastic composites
with defects.
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Appendix: The analysis of two-dimensional wave propagation
in piezoelectric composites

In Aboudi (2013a) the analysis of two-dimensional wave prop-
agation in elastic composites with initial stresses and eigen-stres-
ses has been completely described. In the present Appendix the
complementary analysis that is required to incorporate the electri-
cal effects is presented. As a result, a continuum model will be
established which is capable of analyzing two-dimensional wave
propagation in piezoelectric composites. It should be mentioned
that although the present derivation is confined to a two-dimen-
sional analysis in which no dependence of the variables on the
x1-direction exists, it is possible to generalize this analysis to a full
three dimensional (see Aboudi et al. (2013) for the three dimen-
sional analysis of the elastic case).

As in Aboudi (2013a), the representative cell which is specified
by �2h 6 x02 6 2h;�2l 6 x03 6 2l is divided into Nb � Nc subcells
with b ¼ 1; . . . ;Nb; c ¼ 1; . . . ;Nc, see Fig. 1(c). In addition,

ð�xðbÞ2 ; �xðcÞ3 Þ are local coordinates whose origin is located at the center
of the subcell ðbcÞ, see Fig. 1(d). Just like the mechanical displace-
ment field, the electric potential wðbcÞ in subcell ðbcÞ is approxi-
mated by a second-order expansion in the local coordinates

ð�xðbÞ2 ; �xðcÞ3 Þ as follows (hereafter the ‘hat’ above the variables has
been omitted):

wðbcÞ ¼ �E0ðbcÞ
j xj þ wðbcÞð00Þ þ �xðbÞ2 wðbcÞð10Þ þ �xðcÞ3 wðbcÞð01Þ

þ 1
2

3�xðbÞ22 �
h2

b

4

 !
wðbcÞð20Þ þ

1
2

3�xðcÞ23 �
l2
c

4

 !
wðbcÞð02Þ ðA:1Þ

where E0ðbcÞ
j are the induced initial electric field in the subcell

caused by the initially applied electric displacements D0 and the

time-dependent wðbcÞð00Þ are the area average potential in the subcell
which together with the higher-order time-dependent terms

wðbcÞðmnÞ; (mþ n > 0); must be determined.
The electric field components in subcell ðbcÞ are obtained from

Eq. (5) yielding
EðbcÞ1 ¼ E0ðbcÞ
1

EðbcÞ2 ¼ E0ðbcÞ
2 � wðbcÞð10Þ þ 3�xðbÞ2 wðbcÞð20Þ

	 

EðbcÞ3 ¼ E0ðbcÞ

3 � wðbcÞð01Þ þ 3�xðcÞ3 wðbcÞð02Þ

	 
 ðA:2Þ

The volume average of Maxwell Eq. (6) yields in conjunction
with Eq. (7) and equation (A.4) of Aboudi (2013a) that

eðbcÞ15 W ðbcÞ
3ð20Þ þ eðbcÞ33 W ðbcÞ

3ð02Þ � jðbcÞ11 wðbcÞð20Þ � jðbcÞ33 wðbcÞð02Þ ¼ 0 ðA:3Þ

The surface-average electric potentials w
ð2Þ�ðbcÞ

and w
ð3Þ�ðbcÞ

are de-
fined by

w
ð2Þ�ðbcÞ

¼ 1
lc

Z lc=2

�lc=2
wðbcÞ �xðbÞ2 ¼ �

hb

2

� �
d�xðcÞ3 ðA:4Þ

w
ð3Þ�ðbcÞ

¼ 1
hb

Z hb=2

�hb=2
wðbcÞ �xðcÞ3 ¼ �

lc
2

� �
d�xðbÞ2 ðA:5Þ

Substitution of the electric potential expansion (A.1) in Eq. (A.4) and
(A.5) reveals that these surface-average potentials are related to the
microvariables wðbcÞðmnÞ as follows

w
ð2Þ�ðbcÞ

¼ wðbcÞð00Þ �
hb

2
wðbcÞð10Þ þ

h2
b

4
wðbcÞð20Þ ðA:6Þ

w
ð3Þ�ðbcÞ

¼ wðbcÞð00Þ �
lc
2

wðbcÞð01Þ þ
l2c
4

wðbcÞð02Þ ðA:7Þ

Manipulation of every pair in these equations results in the
following

wðbcÞð10Þ ¼
1
hb

w
ð2ÞþðbcÞ

� w
ð2Þ�ðbcÞ

" #
ðA:8Þ

wðbcÞð01Þ ¼
1
lc

w
ð3ÞþðbcÞ

� w
ð3Þ�ðbcÞ

" #
ðA:9Þ

wðbcÞð20Þ ¼
2

h2
b

w
ð2ÞþðbcÞ

þ w
ð2Þ�ðbcÞ

" #
� 4

h2
b

wðbcÞð00Þ ðA:10Þ

wðbcÞð02Þ ¼
2

l2c
w

ð3ÞþðbcÞ
þ w
ð3Þ�ðbcÞ

" #
� 4

l2
c

wðbcÞð00Þ ðA:11Þ

With W ðbcÞ
3ð20Þ;W

ðbcÞ
3ð02Þ given by Eq. (A.35) and (A.36) of Aboudi

(2013a), and wðbcÞð20Þ;w
ðbcÞ
ð02Þ given by (A.10) and (A.11), Eq. (A.3) pro-

vides, after some manipulations, the following expression

wðbcÞð00Þ ¼ LðbcÞ1 u3

ð2ÞþðbcÞ
þ u3

ð2Þ�ðbcÞ
� �

þ LðbcÞ2 u3

ð3ÞþðbcÞ
þ u3

ð3Þ�ðbcÞ
� �

þ LðbcÞ3 w
ð2ÞþðbcÞ

þ w
ð2Þ�ðbcÞ

 !
þ LðbcÞ4 w

ð3ÞþðbcÞ
þ w
ð3Þ�ðbcÞ

 !
þ LðbcÞ5 W ðbcÞ

3ð00Þ ðA:12Þ

where

LðbcÞ1 ¼ �
eðbcÞ15 l2

c

2 l2
cj
ðbcÞ
11 þ h2

bj
ðbcÞ
33

	 
 ; LðbcÞ2 ¼ �
eðbcÞ33 h2

b

2 l2
cj
ðbcÞ
11 þ h2

bj
ðbcÞ
33

	 
 ;
LðbcÞ3 ¼ �

jðbcÞ11 l2
c

2 l2
cj
ðbcÞ
11 þ h2

bj
ðbcÞ
33

	 
 ; LðbcÞ4 ¼ �
jðbcÞ33 h2

b

2 l2
cj
ðbcÞ
11 þ h2

bj
ðbcÞ
33

	 
 ;
LðbcÞ5 ¼

l2
ceðbcÞ15 þ h2

beðbcÞ33

l2
cj
ðbcÞ
11 þ h2

bj
ðbcÞ
33

ðA:13Þ
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and the variables W ðbcÞ
3ð00Þ have been already determined by the inte-

gration of the mechanical field equations.
The surface-average of the electrical displacements are given

by

D2

�ðbcÞ
¼ 1

lc

Z lc=2

�lc=2
DðbcÞ2

�xðbÞ2 ¼ �
hb

2

� �
d�xðcÞ3 ðA:14Þ

D3

�ðbcÞ
¼ 1

hb

Z hb=2

�hb=2
DðbcÞ3

�xðcÞ3 ¼ �
lc
2

� �
d�xðbÞ2 ðA:15Þ

By employing Eq. (7), and the strain expressions (A.4) in Aboudi
(2013a), we obtain from the above two equations that

D2

�ðbcÞ
¼ D0ðbcÞ

2 þ eðbcÞ15 W ðbcÞ
2ð01Þ þW ðbcÞ

3ð10Þ �
3hb

2
W ðbcÞ

3ð20Þ

� �
� jðbcÞ11 wðbcÞð10Þ �

3hb

2
wðbcÞð20Þ

� �
� DeðbcÞ

2 ðA:16Þ

D3

�ðbcÞ
¼ D0ðbcÞ

3 þ eðbcÞ31 W ðbcÞ
2ð10Þ þ eðbcÞ33 W ðbcÞ

3ð01Þ �
3lc
2

W ðbcÞ
3ð02Þ

� �
� jðbcÞ33 wðbcÞð01Þ �

3lc
2

wðbcÞð02Þ

� �
� DeðbcÞ

3 ðA:17Þ

where

D0ðbcÞ
2 ¼ 2eðbcÞ15 �

0ðbcÞ
23 þ jðbcÞ11 E0ðbcÞ

2 ðA:18Þ

D0ðbcÞ
3 ¼ eðbcÞ31 �0ðbcÞ

11 þ �0ðbcÞ
22

	 

þ eðbcÞ33 �

0ðbcÞ
33 þ jðbcÞ33 E0ðbcÞ

3 ðA:19Þ

being the initial electric displacements induced in the subcells, and
DeðbcÞ

2 ;DeðbcÞ
3 are the eigen-electrical displacement portion of Y e of

Eq. (14).
The electric microvariables wðbcÞðmnÞ in Eq. A.16,A.17 can be

expressed in terms of the surface-average potentials.
Consequently:

D2

�ðbcÞ
¼ D0ðbcÞ

2

� jðbcÞ11

hb
w

ð2ÞþðbcÞ
� w
ð2Þ�ðbcÞ

�3 w
ð2ÞþðbcÞ

þ w
ð2Þ�ðbcÞ

�2wðbcÞð00Þ

 !" #

þ eðbcÞ15 W ðbcÞ
2ð01Þ þW ðbcÞ

3ð10Þ �
3hb

2
W ðbcÞ

3ð20Þ

� �
� DeðbcÞ

2 ðA:20Þ

D3

�ðbcÞ
¼ D0ðbcÞ

3

� jðbcÞ33

lc
w

ð3ÞþðbcÞ
� w
ð3Þ�ðbcÞ

�3 w
ð3ÞþðbcÞ

þ w
ð3Þ�ðbcÞ

�2wðbcÞð00Þ

 !" #

þ eðbcÞ31 W ðbcÞ
2ð10Þ þ eðbcÞ33 W ðbcÞ

3ð01Þ �
3lc
2

W ðbcÞ
3ð02Þ

� �
� DeðbcÞ

3 ðA:21Þ

Where wðbcÞð00Þ have been already determined in Eq. (A.12).
Eqs. (A.20) and (A.21) can be represented in the following com-

pact form:

D2

�ðbcÞ

D3

�ðbcÞ

8><>:
9>=>; ¼ D0ðbcÞ

2

D0ðbcÞ
3

( )
þ K½ �ðbcÞ w

ð2Þ�ðbcÞ

w
ð3Þ�ðbcÞ

8><>:
9>=>;� DeðbcÞ

2

DeðbcÞ
3

( )
þ

M�ðbcÞ
2

M�ðbcÞ
3

( )

ðA:22Þ

where ½K�ðbcÞ is a matrix whose elements involve the electrical prop-
erties of the material occupying the subcell ðbcÞ and the subcell
dimensions, and MðbcÞ

2 ;MðbcÞ
3 consist of a combination of mechanical

variables:
M�ðbcÞ
2 ¼ eðbcÞ15 W ðbcÞ

2ð01Þ þW ðbcÞ
3ð10Þ �

3hb

2
W ðbcÞ

2ð20Þ

� �
� 6

hb
jðbcÞ11 LðbcÞ1 u3

ð2ÞþðbcÞ
þ u3

ð2Þ�ðbcÞ
� �

þLðbcÞ2 u3

ð3ÞþðbcÞ
þ u3

ð3Þ�ðbcÞ
� �

þLðbcÞ5 W ðbcÞ
3ð00Þ

� �
ðA:23Þ

M�ðbcÞ
3 ¼ eðbcÞ31 W ðbcÞ

2ð10Þ þeðbcÞ33 W ðbcÞ
3ð01Þ �

3lc
2

W ðbcÞ
3ð02Þ

� �
� 6

lc
jðbcÞ33 LðbcÞ1 u3

ð2ÞþðbcÞ
þ u3

ð2Þ�ðbcÞ
� �

þLðbcÞ2 u3

ð3ÞþðbcÞ
þ u3

ð3Þ�ðbcÞ
� �

þLðbcÞ5 W ðbcÞ
3ð00Þ

� �
ðA:24Þ

According to the solution strategy, all the mechanical variables
have been already determined at time t þ Dt by integrating the
evolution equation (A.54) in Aboudi (2013a). Hence the only un-

knowns in Eq. (A.22) are the electric microvariables w
ð2Þ�ðbcÞ

and

w
ð3Þ�ðbcÞ

at time t þ Dt. These are determined from the conditions that
the electric potential and normal electric displacements between
the subcells must be continuous:

w
ð2ÞþðbcÞ

¼ w
ð2Þ�ðbþ1;cÞ

; b ¼ 1; . . . ;Nb � 1; c ¼ 1; . . . ;Nc ðA:25Þ

w
ð3ÞþðbcÞ

¼ w
ð3Þ�ðb;cþ1Þ

; b ¼ 1; . . . ;Nb; c ¼ 1; . . . ;Nc � 1 ðA:26Þ

D2

ðbcÞ
¼ D2

ðbþ1;cÞ
; b ¼ 1; . . . ;Nb � 1; c ¼ 1; . . . ;Nc ðA:27Þ

D3

ðbcÞ
¼ D3

ðb;cþ1Þ
; b ¼ 1; . . . ;Nb; c ¼ 1; . . . ;Nc � 1 ðA:28Þ

These together with the continuity conditions between the cells in
the transform domain yield a system of 8NbNc algebraic equations
(in the complex plane) with the same number of unknowns to be
solved. This system can be formally represented as:

TXðt þ DtÞ ¼ Nðt þ DtÞ ðA:29Þ

where T is time-independent matrix which depends on the electri-
cal properties of the constituents and subcells geometry, X a time-
dependent vector consisting of the electric potential microvariables,
and N is time-dependent vector that involve the mechanical vari-
ables and eigen-electrical displacements at time t þ Dt as well as
the electrical applied loadings. The solution of this system of equa-
tions enables the determination of all electrical field variables.
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