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ABSTRACT

A user's guide for the program gmc.f is presented. The program is based on the generalized
method of cells model (GMC), which is capable via a micromechanical analysis, of predicting
the overall, inelastic behavior of unidirectional, multi-phases composites from the knowledge of
the properties of the viscoplastic constituents. In particular, the program is sufficiently general to
predict the response of undirectional composites having variable fiber shapes and different fiber
arrays.

INTRODUCTION

The method of cells is a micromechanical model which has been shown to accurately

predict the overall behavior of various types of composites from the knowledge of the consti-

tuent properties. In particular, the method yields explicit effective constitutive equations for the

inelestic behavior of metal matrix composites. The various capabilities of the method were

demonstrated in a recent review paper and a monograph [ 1.21.

The overall behavior of inelastic, multi-phase, unidirectional fibrous composites generated

by the method of cells from the knowledge of the properties of the individual constituents is

displayed in terms of:

• effective elastic moduli

• effective coefficients of thermal expansion

• effective thermal conductivities

• effective stress-strain response in the inelastic region
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Original method of cells

In the original formulation of the method of cells, a continously-reinforced, unidirectional

fibrous composite is modeled as a doubly-periodic array of fibers embedded in a matrix phase,

Figure la. The periodic character of the assemblage allows one to identify a repeating unit cell

that can be used as a building block to construct the entire composite, Figure lb. The properties

of this repeating unit cell are thus representative of the properties of the entire assemblage. The

unit cell consists of a single fiber subcell surrounded by three matrix subcells. Hence the name

method of cells. The rectangular geometry of the repeating unit cell allows one to obtain an

approximate solution for the stresses and strains in the individual subcells given some macros-

copically homogeneous state of strain or stress applied to the composite. The approximate solu-

tion to the thus posed boundary-value problem is, in turn, used to determine macroscopic (aver-

age) or effective properties of the composite.

The displacement field in the individual subcells is approximated in terms of a linear

expansion in the local coordinates x«) , x (Y) centered at the mid-point of a given subcell,

u (PY) _ W(RY) + X ^^^Y) + Y)

	

X 3 W1	 i = 1 2,3	 (1)

where w(^7) are the displacement components at the center of each subcell ((3y). Using the local

strain-displacement equations for each subcell, one can easily show that the microvariables O(P7)

and W (, PY) are related to the subcell strains E ^^Y) . For example,

aw^^Y)	 ^R

E 1^Y> = ax, E'Y) _ ^'I Y) ,	 £ Y) = w Y) ,	 (2)

with the shear strains given by similar expressions.

The displacement expansion given by Equation (1) contains 9 unknown variables in each

subcell of the repeating unit cell, i.e., three 07) 's, three 0(^7) 's and three W;^ Y) 's, for a total of

36 unknown variables per unit cell. These unknown variables are expressed in terms of the

macroscopic or average strains applied to the composite by imposing the continuity of displace-

ments between the individual subcells, as well as between the given repeating cell and the sur-

rounding cells, together with the continuity of interfacial tractions. These continuity conditions

are applied in an average sense due to the form of the diplacement representation in the indivi-

dual subcells. Application of these continuity conditions leads to the following set of equations:
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Continuity of interfacial displacements

aw;
h 1 ^^ 1Y) + h,0(2y) = (h 1 + h2) 

ax2

aw;
I t WIP1) + 1 2W;^2) _ (1 1 +12)

	

	 (3)ax3

1 aw;	 a(0;

2 ax;	 ax;

where w (11) = w (12) = w;21 ) = w (22) = w;.

Continuity of interfacial tractions

(1Y)(2Y)

	

62i = 6 2i	 (4)

(R 1 )	 (^2)	 (5)
6 3i = U3i

Equations (3)-(5), together with the appropriate constitutive equations for the given subcell

((3y), are used to express the microvariables in terms of the macroscopic strains, E ij , applied to

the composite. The form of the constitutive equations used to describe the material behavior in

the subcell ((3y) is,

6(PY) = C(PY) ^f3Y) - -E-P(h)  - a(PY) AT	 (6)

(PY)	 -(PY)	 -P(0Y)
where 6 is the average stress, E is the average total strain, E is the average plastic

strain, C(PY) is the elastic stiffness matrix, a (P7) are the coefficients of thermal expansion, and AT

is the temperature deviation of the material occupying subcell (Py). The volume averaged subcell

stresses 
—(h) 

are defined in the usual way,

+h P /2 +4/2

V Y -h^/2 -ly/2
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(where V^, = h^l,), with similar definitions for the remaining averaged quantities. The volume

averaged subcell stresses are obtained in terms of the microvariables in the following form:

6 I I _ C ( PY) ^11 -
3Y)AT)J

E
P1PY)^ ( PY) OT) + C^^Y)L(^Z Y)_^P'^Y)_AY)AT) + (yP 7)

-E22

6^RY) _ C ( ^Y) ^11 -
E PiPY)

-a `PIY) OT) + C^Pj Y) (OpY)_EP(PP)Y)
OT) + C^^Y)(W)—EP(2Y)3Y

)oT)

6^^Y) C(^Y)^11 -
E Pi0Y)^ ( PY) AT) + C^^Y)(^ Y)_EP(^Y)^BY)0T) + C^PjY)(y	

')-^P(2Y)	 3Y)OT)_

d23 _ C 6Y)(^TY) + 0 TY) _ EP(^Y))

6
1 3 _ C4Y) (W 1

^Y) + 
aw3 - E p3 )
ax,	

13

6 1 2 _ 
CAN OP') + 

awe _ EP'

x1

t3Y))

a	
1_

The above formulation is sufficiently general to admit any inelastic constitutive model for the
.

average plastic strains E
(P-0

In the subcell (07). Presently, the Bodner-Partom unified viscoplasti-

city theory is used to model the inelastic effects. This constitutive model will be briefly

described in the following section.

The effective or average stress-strain equations for the composite are subsequently con-

structed by applying the definition of the average composite stresses:

1	 2	 (PY)

61J = V	 VPY6U	 (g)

where V = (h 1 + h,)(1 1 + l,). The resulting effective stress-strain equations for the composite

obtained from the above analysis have the form:

6 = C(i^ — c — CEAT)	 (9)

where the elements of the effective elastic stiffness tensor C, the elements of the effective ther-

mal expansion coefficient ot, and the effective plastic strains EP of the composite are expressed

in terns of the elastic thermal properties and plastic strains of the constituent phases in closed
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form. These expressions are lengthy and thus will not be reproduced here - they can be found in

References [1,2].

Although the method of cells has been demonstrated in numerous experimental/analytical

correlation studies to be an accurate and, at the same time, efficient tool for analyzing the inelas-

tic response of metal matrix composites in a wide temperature range, it suffers from several

drawbacks. The rectangular geometry limits the analysis of MMC's to a limited number of fiber

arrays. Only regular arrays with, at most, two different fiber spacings can be analyzed by the ori-

ginal method. The use of four subcells precludes the possibility of inclusion of an interfacial

region between the fiber and the matrix phases, as well as consideration of more complicated

fiber shapes. The transversely isotropic behavior of unidirectional composites in the plane per-

pendicular to the fiber direction is imposed artificially by setting h l =1 1 and h, =1) (see Figure

1), and subsequently averaging out the effect of the square geometry of the unit cell. These limi-

tations motivated the development of the generalized version of the method of cells described

subsequently.

Generalized method of cells

In the generalized formulation, the repeating unit cell is subdivided into an arbitrary

number of subcells. This generalization extends the modelling  capability of the method of cells

to include the following:

• thermomechanical response of multi-phase, metal matrix composites

• modelling of variable fiber shapes

• analysis of different fiber arrays

• modelling of porosities and damage

• modelling of interfacial regions around inclusions, including interfacial degradation

The generalization of the original method of cells allows approximate micromechanical

analysis of more complicated periodic arrays such as the one shown in Figure 2. The repeating

volume element used in the GMC micromechanical analysis is shown in Figure 3. It consists of

NpxNy subcells. Each of these subcells is assumed to be occupied, in general, by an elastic-

viscoplastic material. Thus the repeating volume element consists of NpxNy different viscoplas-

tic materials, i.e., it represents a multi-phase, inelastic composite.
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A given elastic-viscoplastic phase is characterized in the elastic region by five elastic con-

stants:

EA = axial Young's modulus (sometimes called longitudinal or major)
ET = transverse Young's modulus
VA = axial Poisson's ratio
VT = transverse Poisson's ratio
GA = axial shear modulus

It is also characterized by two coefficients of thermal expansion:

UA = axial CTE
aT = transverse CTE

The form of the constitutive equation used to described the material behavior in the subcell

(Py) in the generalized method of cells is precisely the same as for the original method of cells

given by Equation (6). For a transversely isotropic material occupying the subcell ((3y), the form

of the elastic stiffness matrix in Equation (6) is:

(PY)

COY) =

C 11 C12 C 12 0 0 0

C 12 C22 C23 0 0 0

C 12 C23 C22 0 0 0

0 0	 0 C44 0 0
0 0	 0 0 C55 0
0 0	 0 0 0 C66

(10)

where the x 1 direction is perpendicular to the plane of isotropy. The elastic stiffness matrix ele-

ments are related to the more commonly used engineering constants in the following manner:

C 11 =EA +4KvA
C12 = 2KvA
C22 = K + GT
C23 = K - GT
C W = GT
C55 = C66 = GA

where
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E	 E
_ 1	 T	 1	 A

GT 2 1+ VT	
and	 x= 4 1	

EA
[ 

2 
0 — VT)	 — VA]

T

The form of the thermal expansion coefficient matrix is:

a(PY) = diag[otp) , (4Y) , (M) , 0, 0, O]	 (11)

In the inelastic region the viscoplastic phase is represented at this time by the Bodner-

Partom unified viscoplasticity theory. The local viscoplastic strain rate for a given inelastic sub-

cell is expressed as

£P (^Y) 
= A(pY) 

S (f3Y . , 
R + y # 2	 (12)

where A(RY) is the flow rule function of the inelastic phase and 
s0Y) are the stress deviators. The

explicit form of the flow rule function is given by

A( p7) = Do exp {—n [Z2(PY/ (307) )]° } / J „ Y	 (13)

where n = 0.5 (n + 1)/n, and 0Y) = 2 s( ^Y) is the second invariant of the average stresses in

the inelastic subcell. Do and n are inelastic parameters, and Z(pY) is a state variable given for an

isotropic hardening material by

Z(PT) = Z ^PY) + (ZWY) — Z^PY)) exp [—m W ((^Y) / Z^Y) ] 	 (14)

where W(^7) is the plastic work per unit volume. For anisotropic (directional) hardening, the

corresponding effective state variable is given by (see Reference [2, p.220]),

t	 3	 t

^ef^Y) = Z^7) + q ( PY) J 7(pY)& + 0 — q (^Y) ) 	 J Z( p7) rij dt	 (15)
0	 i,Fl 0

where rii = 6ii /y6kj6kj , and 7q.) is the time rate of change of the state variable for isotropic
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hardening given by Equation (14).

The meaning of the six parameters Do, Zo, Z 1 , n, in 	 q in Equations (14) and (15) is

given below.

Do =	 limiting strain rate in shear for large values of the second stress invariant J2

Zo =	 initial value of the hardening variable Z(t) which is related to the yield stress

of the material in simple tension

Z 1 =	 saturation value of the hardening variable for large values of stresses

M =	 a parameter that controls the rate of work-hardening of the material

n =	 a parameter that controls the rate sensitivity of the material

q = a parameter that determines the relative weight of isotropic and directional

hardening of the material. q = 1 provides a fully isotropic hardening and q = 0

corresponds to fully directional hardening

More information regarding the meaning and physical interpretation of these parameters can be

found in Reference [2; pp. 216-224].

The micromechanical analysis of the repeating volume element in the generalized method

of cells proceeds in exactly the same manner as that for the original method. In this case how-

ever, imposition of continuity of displacements and tractions between the individual subcells of

the repeating unit cell, and between the given repeating cell and the surrounding cells, results in

a system of equations which has a different appearance than that given by Equations (3)-(5). In

fact, the generalization of the method of cells to an arbitrary number of subcells within the given

repeating unit cell increases the complexity of the equations obtained by imposing the aforemen-

tioned continuity conditions and requires the use of compact notation. The system of equations

relating the n-icrovari able s to the uniformly applied composite strains, obtained from the imposi-

tion of the continuity conditions, can be written in compact matrix notation as follows:

AES — A P E P = KT
	

(16)

where A, W, and K are appropriate matrices of coefficients (for temperature-independent pro-

perties, the elements of these matrices are constant); E S , E p are the total and plastic strain vectors

for all the subcells; and e are the average composite strains. The above equations can be solved

in order to express the subcell strains in terms of the average strains:
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F S = AE + AP cP
	

(17)

where A = A 1 K and AP = A 1 AP . The matrix A, in fact, is the resulting Hill's concentration

matrix which relates the micro to macro variables.

Using the definition of average stress in the repeating unit cell of the composite,

a = hl ^hply(Y
R•y

we can readily establish the overall constitutive equations for the multi-phase, inelastic compo-

site in the form:

6=B* (E—e —a * AT)	 (19)

where

6 =	 the average composite stress

ar =	 the average composite total strain

e =	 the average composite plastic strain

B* =	 the effective elastic stiffness matrix of the composite

a* =	 the effective CTE of the composite

The effective stiffness matrix of the composite, B * , has the form,

(18)

1*

B*=1

b 1i b 12 b 13 0 0 0

b 12 b22 b23 0 0 0

b 13 b23 b33 0 0 0

0 0	 0 b:4 0 0
0 0	 0 0 b55 0

0 0	 0 0 0 b66

(20)

Note that in the most general case, B * represents a composite material whose effective behavior
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is orthotropic, in contrast to the transversely isotropic behavior given by Equation (9).

The effective engineering constants of the composite can be determined by inverting B*.

This inversion produces the effective compliance matrix S * whose elements are related to the

engineering constants as follows:

E 11 = 1 /S11

t
v 1' =—S1,/S11

E;, = I/S z2

V 23 = -S23/S22

E3 3 = 1/S33

G*23 = 1 /S44

G13 = 1/S55

G 1 , = 1/S66

The matrix of the effective coefficients of thermal expansion is given by

a* =diag[a1 1 , a *2,  a33, 0, 0, 01	 (21)

where a1 1 , a;-, and a3 3 are the effective CTE's in the x 1 , x ,, and x 3 d irections, respectively.

The composite plastic strain vector F- is determined by an incremental procedure in a step-

wise manner. It is given in terms of the plastic strains in the individual subcells by an explicit

expression which will not be reproduced here. Details of the GMC analysis can be found in

Reference [3].
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PROGRAM DESCRIPTION

The flow chart outlining the logical organization of the program gmc.f based on the gen-

eralized method of cells is given on the following page. The current capabilities of the program

are listed in Table I.

The input data is read in from a file called gmc.data and the output is written to two files,

namely gmc.out and gmc.plot. The input data is logically organized into four blocks, namely:

the properties of different materials that occupy various subcells in the repeating unit cell; the

loading applied to the composite; the internal microstructure of the repeating unit cell; and the

geometrical details of the repeating unit cell. The output file gmc.out contains the echo of the

input data, results for the effective thermoelastic properties, including elements of the effective

stiffness matrix and the engineering properties, and the values of all the average stress and strain

quantities calculated at the specified loading increments.

The program contains three parameter variables that can be reset within the program if

desired. The program must be recompiled if these parameters are reset by the user. The three

parameters are:

NBM = maximum number of subcells in the x-, direction (set to 8)
NGM = maximum number of subcells in the x 3 direction (set to 8)
NMM = maximum number of different materials within the repeating unit cell (set to 5)

In the input file, the corresponding actual numbers for the user specified geometry are

denoted by:

NB = actual number of subcells in the x, direction
NG = actual number of subcells in the x 3 direction
NMT = actual number of different materials

These numbers should not exceed the corresponding maximum numbers.

Detailed description of the input and output files, together with examples that illustrate the

structure of these files and the capabilities of the program, are given on the following pages.
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FLOW CHART FOR THE COMPUTER PROGRAM GMC.F

READ INPUT FILE GCM.DATA

material parameters, loading parameters,

RVE geometry

GCM MICROMECHANICAL ANALYSIS

WRITE GCM.OUT

effective thermoelastic coefficients

IF NINA = 0

WRITE GCM.OUT
	 yes

inelastic response at every NSTEP increment 	
( STOP

WRITE GCM.PLOT

stress-strain response at every
NSTEP increment

12



Table I. Current available capabilities within GMC.

Type
	

Description

Constitutive models	 Elastic: isotropic, transversely isotropic materials

Viscoplastic: Bodner-Parton unified theory for isotropic

materials with isotropic or anisotropic hardening.

Integration schemes	 Forward Euler integration technique

Loadings	 Monotonic (strain control)

9 types of uniaxial load histories (see Table II)

Repeating unit cell geometry 	 6 standard geometries (see Table III) and a user

specified geometry

Modelling capabilities	 monotonic thenno-mechanical response

modelling of variable fiber shapes

analysis of different fiber arrays

modelling of porosities and damage

modelling of interface regions around inclusions and fibers

Predictive capabilities 	 effective (macroscopic) elastic moduli

effective coefficients of thermal expansion

effective thermal conductivities

effective stress-strain response in the inelastic region
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Input file gmc.data

The input file data is organized into four distinct blocks. The organization of the input data

file and the variable names read by the program are given below.

Block l - Defines constituent material parameters

NMT	 - # of different materials

MNAME
Repeat EA,ET,GA
NMT	 FNA,FNT
times	 ALPA,ALPT

D0,Z0,Z 1
BM,AN,Q

- material name
- elastic Young's and shear moduli
- axial and transverse Poisson's ratios
- axial and transverse thermal expansion coefficients
- Bodner-Partom viscoplastic model parameters'`
- Bodner-Partom viscoplastic model parameters

Block 2 - Defines loading parameters 

AMP,RATE	 - final strain amplitude, strain rate of loading
LOP,NINT,NINA - load option (see Table II), number of load increments,

actual number of load increments
5	 NSTEP	 - output intervals
lines	 THETA	 - angle for LOP = 9 (skip if LOP is other than 9)

DTEMP	 - temperature deviation from reference temperature

Block 3 - Defines microstructure (assigns materials to subcells in the repeating unit cell).

NB,NG	 - number of subcells in the repeating unit cell in the x, and x 3 directions.

Repeat t X ... NB	 - elements of the matrix MATNUM(NG,NB) containing material numbers
NG	 corresponding to the material occupying the given subcell, starting with the
times	 subcell in the upper left corner of the repeating unit cell and progressing

through NB columns (see Example 1). Each element of MATNUM specifies
the material number MNAME(NM) in the given subcell (py), see Table III

ZNote that the material in the given subcell is perfectly elastic if DO = 0.0.
3 See footnotes a, b, and c on following page
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Block 4 - Defines subcell geometry

ID	 - standard geometry definition (see Table III). The following are
currently available: 1,2,3,4,5,6 or 10

VF	 - volume fraction (needed unless ID = 10). If ID = 10, the internal cell
geometry must be input through the specification of the dimension
of the individual subcells. In this case, we need to specify hp and ly
for P = 1, • - • , Np and Y = 1, • - • , N y , Figure 3, as follows:

hp
hV1

NB
lines

hl
Iline
	

1 1 	 1-1	 ...	 ly

Footnotes

a.)
AMP is the final value (amplitude) of applied (monotonic) loading. For example, if we want to run the
program in order to generate the response of the composite in the x 2 direction, then a stress-strain curve
(T22 — E22 is generated which gives the average composite stress 622 for the given average composite
strain E2 2 . For a final value of E22 x.02, say, AMP is input as 0.02. RATE is the rate of straining which is
imposed in generating the 622 — E22 curve. For the rate of 0.01 /sec, RATE is input as 0.01.

b.)

NINT is chosen such that the incremental integration procedure for the visco-plastic model converges.
Since the response of an inelastic composite is generated by an incremental procedure, according to
which the strain is changed in a step-wise manner, we need to define the number of increments required to
achieve the final value of the applied strain (i.e., to reach AMP). This number is given by NINT. In case of
nonconvergence, the user has to increase NINT. At this stage of the program development,
nonconvergence is ascertained by the generation of very large values for the streses and strains. An
automatic nonconvergence criterion will be incorporated into the program in the next phase of program
development.

C.)

NINA is the actual number of increments that the program will execute and may be different from NINT. If
the effective elastic nwduli and coefficients of thermal expansion are the only quantities sought by the
user, set NINA = 0.
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Table H. Currently available loading options.

LOP Number	 Description

LOP= 1 applies Ell for a nonzero 611 while keeping  all other
stresses zero (simulates uniaxial loading in the xl
direction)

LOP = 2 applies E- , 2 for a nonzero d22 while keeping all other
stresses zero (simulates lniaxial loading in the x,
dv-ection)

LOP = 3 applies E33 for a nonzero 633 while keeping all other
stresses zero (simulates uniaxial loading in the x3
direction)

LOP = 4	 applies E23 for a nonzero 623 while keeping all other
stresses zero (simulates transverse shear loading in the
X 2 — x3 plane)

LOP = 5 applies E 13 for a nonzero 613 while keeping all other
stresses zero (simulates axial shear loading in the x l — x3
plane)

LOP = 6 applies E12 for a nonzero 6„ while keeping all other
stresses zero (simulates axial shear loading in the x l — x,
plane)

LOP = 7 applies E2, = -E33 for nonzero 622 and 633 while keeping
all other stresses zero (simulates pure shear in the x, — x3

plane at 45 ° to the applied loading)

LOP = 8	 applies AT (temperature deviation from a reference
temperature) while keeping all composite stresses 6ij zero.

LOP = 9 applies F, to a unidirectional lamina in which the fibers
are in.-lined at an angle 8 with respect to the loading
direction for a nonzero d xx , while keeping all other stresses
zero (simulates axial loading of an off-axis lamina).
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Table III. Standard repeating unit cell geometry definitions (see Appendix I for a more detailed
explanation).

ID Number	 Geometry configuration 	 Material assignment matrix 

ID = 1	 "square" fiber in a square array 	 2 2
(see Figure 6)	 1 2

ID = 2	 "square" fiber in a triangular array	 2 2 1 2
(see Figure 7)	 2 2 2 2
VF < 0.288675 (see Figure 8a)	 1 2 2 22222

1 2 1 2
VF > 0.288675 (see Figure 8b) 	 1 2 2 2

1 2 1	 2
2212

ID = 3	 it
	 fiber in a square diagonal array	 2 2 1	 2

(see Figures 9 and 10) 	 2 2 2 2
1 2 2 2
2 2 2 2

ID = 4	 cross-shaped fiber in a square array 	 2 2 2 2
(see Figures 11 and 12)	 2 1 2 2

1 1 1 2
2122

ID = 5	 coated, "square" fiber in a square array 	 2 2 2 2
(see Figures 13 and 14)	 3 3 3 2

3132
3332

ID = 6	 circular fiber in a square array 	 2 2 2 2 2 2 2
(see Figure 15)	 2 2 2 1 2 2 2

2211122
2111112
2 2 1	 1	 1 2 2
2 2 2 1 2 2 2
2 2 2 2 2 2 2

ID = 10	 user specified fiber shape and geometry	 any assignment

' Material 1 - fiber, material 2 - matrix, material 3 - coating

17



Example 1

This example illustrates the construction of the matrix MATNUM(NB,NG) that stores

information on the types of materials that occupy various subcells. Each of the elements of

MATNUM specifies the material number MNAME(NM) in the given subcell (Py). Let NMT =

2, NB = 3, NG = 4. For the specified NB and NG, the repeating unit cell has the form shown in

Figure 4. In order to show the form of MATNUM(NB,NG), let us assign in this example

'Material V to the subcells (1,1), (2,2) and (1,4) while allowing the remaining subcells to be

occupied by 'Material 2'. The resulting assignment is depicted in Figure 5.

Example 2

This example shows how to construct an input file in order to generate the transverse

stress-strain response curve, a„ versus e-), (i.e. LOP = 2), of a boron/aluminum composite using

a repeating unit cell that consists of 4 subcells (i.e. NB = 2 and NG = 2, ID = 1). The properties

of the elastic boron fibers, 'Material 1', and the elastic-perfectly plastic aluminum matrix,

'Material 2', are given as taken from Reference [2], p. 248. They are reproduced in the table

below.

Table IV. Material parameters of boron fibers and aluminum matrix

Material	 E	 v	 Dot	 Zo	 Zt	 m	 n

(GPa)	 (sec)	 (MPa)	 (MPA)

Boron	 413.70	 0.20	 -	 -	 -	 -	 -

Aluminum 5	55.16	 0.30	 10-4	 103.42	 103.42	 -	 10

The input file is given in Appendix H. Note that AMP = 0.005 and RATE = 0.01/sec. The

number of increments required to generate the response curve is NINT = 2000. This number

ensures that the resulting integration time increment is sufficiently small to attain convergence.

The output is written to the output file gme.out every 20 increments (since NSTEP = 20). In

addition, DTEMP = 0 (i.e. AT = 0.0) and VF--0.5.

NNote that since Z (, = Z, , the material is elastic, prefectly plastic and thus m is irrelevant (i.e., can he anything).
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Example 3

For the same boron/aluminum system of Example 2 we generate the transverse stress-strain

response curve, 6„ versus e,-), using 4 x 4 subcells in the repeating unit cell. As the fundamen-

tal configuration and geometry of the repeating unit cell shown in Figure 16 produces the same

doubly periodic array as in Example 2, the resulting stress-strain response curve should be ident-

ical. Here, NB = 4, NG = 4 and VF = 0.5.

Since the geometry in this case is supplied by the user, ID = 10 and so the dimensions hP

and 1.y of the subcells (Py) must be specified. In order to generate VF = 0.5, we take

h1+h,)=0.5;11+1,,=0.5

h l =h3	;11 =13

hi =h4	;1,=14

h 1 =1 1	:h,=1-)

i4xh	 1
Since VF =	 1	 -> h l = 8 = 0.3535. The subcell dimensions are input in the following

manner

h4

h3

h')

hl

1 1 12 1 3 14

or

0.1464

0.3535
0.1464

0.3535
0.3535 0.1464 0.3535 0.1464

The complete form of the input file for the present example is given in Appendix III.
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Output file gmc.out

The first section of this file contains an "echo" of the input data that was read by the pro-

gram from the input file gmc.data. The next section of the output file contains information about

the subcell identification, material assignment in each subcell, volume of each subcell and the

total volume of the repeating unit cell. It is a concise summary about the internal arrangement of

the individual subcells.

The next section presents the effective stiffness matrix B * of the composite. This is fol-

lowed by the effective engineering elastic moduli:

El1S --> E11
N12S --> vie

E22S --> E *2,

N23S --> v *23

E33S --> E33

G23S --> G;3

G13S --> Gi3

G 12 --> G12

The effective coefficients of thermal expansion are printed as follows:

ALPHA 11 S --> a 11

ALPHA22S --> a*22

ALPHA33S --> a33

Note 1 : If the effective elastic moduli and coefficients of thermal expansion are the only quanti-

ties sought by the user, the parameter NINA = 0 in the input file as mentioned previously. In this

case, the program will not generate the inelastic response and the output file will terminate at

this stage.

Note 2 : If the effective thermal conductivities of the composite k*1, k3, and k3 3 , are sought, the

user should set NINA = 0, and the following replacement should be made in the input file:

EA(NM) --> k A for each material type

ET(NM) --> kT for each material type
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FNA(NM) = FNT(NM) = 0

GA(NM) is arbitrary

where kA and kT are the axial and transverse thermal conductivities of a transversely isotropic

matarial which occupies a given subcell. In the output file, ki t , kZ2 and k33 are identified by

E* 1 , E22 and E3 3 , respectively.

The next section presents the inelastic response when the parameter NINA is greater than

zero. The program prints the following results at the first increment (INC = 1) and subsequently

at every NSTEP increments according to the format:

INC = increment number

IJ component	 Total strains	 Stresses	 Plastic strains	 Thermal strains

11	 ...	 ...	 ...	 ...

22	 ...	 ...	 ...	 ...

33	 ...	 ...	 ...	 ...

23	 ...	 ...	 ...	 ...

13	 ...	 ...	 ...	 ...

12	 ...	 ...	 ...	 ...

The program is terminated when the increment number INC reaches NINA. A sample

gmc.out output file is presented in Appendix IV generated with the input file gmc.dat.a of

Example 3.
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Output file gme.plot

For the parameter NINA greater or equal to 1, the program writes to this file the specified

stress-strain response dictated by the loading option LOP, starting at the first increment INC = 1,

and at each subsequent NSTEP increment. The loading option specifies the stress-strain response

written to this file according to;

LOP = 1 £11 611

LOP = 2 E„ 6,,

LOP = 3 £33 633

LOP = 4 £^3 62)3

LOP =S £13 613

LOP = 6 £12 61?

LOP =7
1	 1
^^^ - £33^	 (6^" - 6332

Z

LOP = 8 AT E I 1	 £22	 £33

LOP = 9 £XX 6xz
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APPENDIX I

A more detailed explanation of the standard repeating unit cell geometry definitions sum-

marized in Table II are given in this appendix.

ID = I : corresponds to the original method of cells (NB = NG = 2) in which the fiber
occupies subcell (1,1), with the other three subcells occupied by the matrix as shown in
Figure 6. Let VF denote the fiber volume fraction. The dimension of the repeating unit
cell are scaled to 1x1  so that h, + h2 = 1 1 + 12 = 1. Thus, for a "square" fiber,
specification of VF is sufficient to define the dimension hp and 1 Y , i.e.,
h l = NV—F, h2 = 1 — h l , 1 1 = h l and 12 = h2 . The material assignment of the fiber
(material 1) and matrix (material 2) is as follows:

2 2

1	 2

ID = 2 : gives a triangular packing of "square" fibers shown in Figure 7. In this
arrangement, NB = NG = 4, and for a given fiber volume fraction VF the dimensions hp and
IT are automatically determined internally. For this packing arrangement, it is necessary to
differentiate between two cases which is done internally. For VF < 0.288675, the geometry
of the repeating unit cell is given in Figure 8a, where

h l =b– 2

h- = a
h3 = hl
h4 = a

and

I 1 =a
1^ = c

13=a
14 = c

where

a = 2 N' V F

b = 1–a
2

c=N4

The material assignment of the fiber (material 1) and matrix (Material 2) in this case is:
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.'	 2	 1	 2

2 2 2 2

1 2 2 2

For VF > 0. 288675, the geometry of the repeating unit cell is given in Figure 8b, where

h 1 = 2b

h,=2—b

h3 = h1
h4 = h,)

and

1 1 =a
1, = c

1 3 = 11

14 =122

The material assignment of the fiber (material 1) and matrix (material 2) in this situation is:

I	 2	 1	 2

1 2 2 2
1 2 1 2

2 2 1 2

ID = 3 : specifies a square diagonal packing illustrated in Figure 9. In this case NB = NG =
4. The subcell dimensions h P and 1, are determined internally in the program for the
specified fiber volume fraction VF. For this packing arrangement, VF cannot exceed 0.5.
The dimension of the repeating unit cell for this packing arrangement shown in Figure 10,
where

h 1 = 2[1-2 2

h^=N 2
h 3 = h1

h4 = h4

and
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1 1 = h,)
1- = hl
13 =11
14 =12)

The material assignment of the fiber  (material 1) and matrix (material 2) for this case is:

2	 2	 1	 2
2 2 2 2
1 2 2 2
2 2 2 2

ID = 4 : models a cross-shaped fiber shown in Figure 11. It requires that NB = NG = 4, and
the parameter "a" shown in the figure must be provided by the user. Thus in this case the
parameter "a" should be read by the statement READ A. For this arrangement, the
geometric details of the repeating unit cell are shown in Figure 12. Defining
x = —2a + 4aVF, the dimensions h^ and l y are given by

h 1 =a
h, = x
h3 =a
h4 = 1 —2a—x

and

1 1 = h1
1, = h-,
1 3 = h3
14 = h4

The material assignment of the fiber (material 1) and matrix (material 2) for this case is:

2	 2	 2	 2
2 1 2 2
1 1 1 2

2 1 2 2

ID = S models a coated, "square" fiber shown in Figure 13. Let VF and VC denote,
respectively, the fiber volume fraction and the coating volume fraction. This situation
requires that NB = NG = 4. Note that in this case the parameter VC is read by the statement
READ VC. The dimensions of the repeating unit cell for this arrangement are given in
Figure 14, where
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h 1 =^tiVF + V^^

h, = W F

h3 = h1
h4=1—[h1+h, +h3]

and

1 1 =h1
1, = h,
13 = h3
14 = h4

The material assignment of the fiber (material 1), matrix (material 2), and coating (material
3) for this case is:

2	 2	 2	 2
3 3 3 2

3 1 3 2

3 3 3 2

ID = 6 : this case approximates a circular fiber using Np = 7 and N. = 7 subcells as shown
in Figure IS. B_v imposing the condition that o f = nR-/h2 , where R is the fiber radius, it
follows that

h-) = h3 = h5 = h6 
= VT2  R

h4 = 4h-,
h l = h7 = [h — (2h, + 2h 3 + hA/2 and 1; = h, for 1 = 1,	 ,7

The material assignment of the fiber (material 1) and matrix (material 2) for this case is:

2 2 2 2 2 2 2
2 2 2 1 2 2 2
2 2 1 1 1 2 2

2 1 1 1 1 1 2

2 2 1 1 1 2 2

2 2 2 1 2 2 2
2 2 2 2 2 2 2

ID = 10 : enables the user to specify his own internal configuration by specifying the
dimensions h P and 17.
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APPENDIX II

The input file for the case described in Example 2 is given below.

2
'Material 1'
413.70E+09 413.70E+09

0.20E+00 0.20E+00
1.00E-06 1.00E-06
0.00E+00 1.00E+00
1.00E+00 1.00E+00

Block	 1 'Material 2'
55.16E+09 55.16E+09
0.30E+00 0.30E+00
1.00E-06 1.00E-06
1.00E+04 103.42E+06
1.00E+00 10.00E+00
0.005	 0.01
2	 2000 2000

Block	 2 20
0.0
2 2

Block	 3 {	 2	 2
1	 2
1

Block 4 {	 0.5

172.30E+09

1.00E+00
1.00E+00

21.20E+09

103.42E+06
1.00E+00
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APPENDIX III

The input file for the case described in Example 3 is given below.

2
'Material 1'
413.70E+09 413.70E+09 172.30E+09

0.20E+00 0.20E+00
1.00E-06 1.00E-06
0.00E+00 1.00E+00 1.00F*00
1.00E+00 1.00E+00 1.00E+00

Block	 1 'Material 2'
55.16E+09 55.160E+09 21.20E+09
0.30E+00 0.30E+00
1.00E-06 1.00E-06
1.00E+04 103.42E+06 103.42E+06
1.00E+00 10.00E+00 1.00E+00
0.005	 0.01

Block 2 2	 2000 2000
20
0.0
4	 4
2 2 2 2

Block 3 1	 2	 1	 2
2	 2	 2	 2
1	 2	 1	 2
10
0.1464

Block 4 0.3535
0.1464
0.3535
0.3535 0.1464	 0.3535 0.1464

29



APPENDIX IV

The output file gmc.out generated by the input file presented in Example 3 is given below.

****************************************************
**	 GENERALIZED CELLS MODEL 	 **
**	 **

**	 G C M	 **
**	 **

**	 Determination of effective elastic, thermal **
**	 and inelastic response of unidirectional,	 **
**	 multi-phase composites using generalized 	 **
**	 version of the method of cells 	 **
**	 **

**	 Programmed by	 **
**	 Jacob Aboudi & Moshe Paley 	 **
**	 NASA Lewis version - July 1992 	 **
****************************************************

***** INPUT DATA ECHO *****

MATERIAL SPECIFICATION

Number of Materials (NMT) = 2

Material	 1

Thermo-elastic constants

EA	 =	 0.414E+12 ET	 = 0.414E+12 GA = 0.172E+12
NUA	 =	 0.200E+00 NUT	 = 0.200E+00
ALFA =	 0.100E-05 ALFT = 0.100E-05

Inelastic parameters

DO	 =	 0.000E+00 ZO	 = 0.100E+01 Z1 = 0.100E+01

M	 =	 0.100E+01 N	 = 0.100E+01 Q	 = 0.100E+01

Material 2

Thermo-elastic constants

EA	 =	 0.552E+11 ET	 = 0.552E+11 GA = 0.212E+11

NUA	 =	 0.300E+00 NUT	 = 0.300E+00
ALFA =	 0.100E-05 ALFT = 0.100E-05

Inelastic parameters

DO	 =	 0.100E+05 ZO	 = 0.103E+09 Z1	 = 0.103E+09

M	 =	 0.100E+01 N	 = 0.100E+02 Q	 = 0.100E+01
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LOADING SPECIFICATION

Amplitude = 0.500E-02 	 Rate = 0.100E-01
Loading option =	 2
Number of integration increments =	 2000
Actual number of increments =	 2000
Number of print steps = 	 20
Temperature change	 = 0.000E+00

RVE SPECIFICATION

Number of subcells in the x-2 direction =	 4
Number of subcells in the x-3 direction =	 4

Subcell material assignment

2 2 2 2
1 2 1 2
2 2 2 2
1 2 1 2

Subcell dimension assignment

ID = 10

H	 4 =	 0.146E+00
H 3 =	 0.354E+00
H 2 =	 0.146E+00
H 1 =	 0.354E+00

L(1,...,NG) = 0.354E+00 0.146E+00 0.354E+00 0.146E+00

***** OUTPUT RESULTS *****

SUBCELL IDENTIFICATION, VOLUME AND MATERIAL ARRANGEMENT

(BETA , GAMMA)	 SUBCELL #	 SUBCELL MATERIAL SUBCELL VOLUME

1 ,	 1 1 1 0.125E+00
1 2 2 2 0.518E-01
1 3 3 1 0.125E+00
1 4 4 2 0.518E-01
2 1 5 2 0.518E-01
2 2 6 2 0.214E-01
2 3 7 2 0.518E-01
2 4 8 2 0.214E-01
3 1 9 1 0.125E+00
3 2 10 2 0.518E-01
3 3 11 1 0.125E+00
3 4 12 2 0.518E-01	 31

4 1 13 2 0.518E-01
4 2 14 2 0.214E-01



INC =	 1

IJ	 TOTAL STRAINS

11 -0.341E-06
22 0.250E-05
33 -0.642E-06
23 0.000E+00
13 0.000E+00
12 0.000E+00

4	 3	 15	 2	 0.518E-01
4	 4	 16	 2	 0.214E-01

TOTAL VOLUME = 0.100E+01

Effective stiffness matrix

	

0.258E+12	 0.473E+11	 0.473E+11

	

0.473E+11	 0.149E+12	 0.446E+11

	

0.473E+11	 0.446E+11	 0.149E+12
0.378E+11

0.457E+11
0.457E+11

Effective engineering moduli

E11S = 0.235E+12
N12S= 0.245E+00
E22S= 0.131E+12
N23S= 0.257E+00
E33S = 0.131E+12
G23S= 0.378E+11
G13S= 0.457E+11
G12S= 0.457E+11

Effective thermal expansion coefficients

ALPHAIIS = 0.100E-05
ALPHA22S = 0.100E-05
ALPHA33S= 0.100E-05

EFFECTIVE STRESS-STRAIN RESPONSE

STRESSES	 PLASTIC STRAINS

0.195E-02
0.327E+06
0.391E-01
0.000E+00
0.000E+00
0.000E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

THERMAL STRAINS

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

INC =	 20

IJ	 TOTAL STRAINS	 STRESSES	 PLASTIC STRAINS	 THERMAL STRAINS	 32



IJ	 TOTAL STRAINS	 STRESSES

11 -0.316E-03 -0.600E+01
22 0.500E-02 0.187E+09
33 -0.360E-02 0.000E+00
23 0.000E+00 0.000E+00
13 0.000E+00 0.000E+00
12 0.000E+00 0.000E+00

11 -0.682E-05 0.625E-01 -0.504E-21 0.000E+00
22 0.500E-04 0.654E+07 0.328E-20 0.000E+00
33 -0.128E-04 0.500E+00 -0.232E-20 0.000E+00
23 0.000E+00 0.000E+00 0.000E+00 0.000E+00
13 0.000E+00 0.000E+00 0.000E+00 0.000E+00
12 0.000E+00 0.000E+00 0.000E+00 0.000E+00

INC =	 40

IJ TOTAL STRAINS STRESSES

11 -0.136E-04 0.125E+00
22 0.100E-03 0.131E+08
33 -0.257E-04 0.100E+01
23 0.000E+00 0.000E+00
13 0.000E+00 0.000E+00
12 0.000E+00 0.000E+00

PLASTIC STRAINS

-0.103E-20
0.673E-20

-0.476E-20
0.000E+00
0.000E+00
0.000E+00

THERMAL STRAINS

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

INC = 1980

IJ TOTAL STRAINS STRESSES

11 -0.316E-03 -0.400E+01
22 0.495E-02 0.187E+09
33 -0.355E-02 0.240E+02
23 0.000E+00 0.000E+00
13 0.000E+00 0.000E+00
12 0.000E+00 0.000E+00

PLASTIC STRAINS

-0.121E-03
0.352E-02

-0.318E-02
0.000E+00
0.000E+00
0.000E+00

THERMAL STRAINS

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

INC = 2000

PLASTIC STRAINS

-0.121E-03
0.357E-02

-0.323E-02
0.000E+00
0.000E+00
0.000E+00

THERMAL STRAINS

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
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a) Doubly periodic array
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b) Representative unit cell

Figure 1. Doubly-periodic array and a repeating unit cell for the original method of cells.
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Figure 2. Unit periodic geometry for the generalized method of cells (GMC).
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Figure 3. A repeating volume element of GMC.
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X2

X3

Figure 4. A repeating volume element with NB = 3 and NG = 4 (Example 1).

2 2 2 2

2 1 2 2

1 2 2 1

Figure 5. Material assignment for Figure 4.
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Y = Y= 2
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Y = 1 Y= 2

12

X3

Figure 6. Repeating volume element for the case ID = 1, with the fiber assigned

to the subcell (l,l) and the matrix to the remaining subcells.

Figure 7. Fiber arrangement for triangular packing (ID = 2).
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Figure 8. Fiber and matrix locations in a repeating unit cell for triangular

packing (ID = 2) when a.) o f < 0.288675 and b.) o f > 0.288675.
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Figure 9. Fiber arrangement for square diagonal packing (ID = 3).
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Figure 11. A cross-shaped fiber (ID = 4).

Figure 12. Fiber and matrix locations in a repeating unit cell for a cross-shaped

fiber (ID = 4).
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Figure 13. A fiber with a coating (ID = 5).
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Figure 14. Fiber, matrix and coating locations in a repeating unit cell (ID = 5).
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Figure 15. Repeating volume element for a circular fiber approximation (ID = 6).
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Figure 16. Material assignment for Example 3.
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