
International Journal of Solids and Structures 50 (2013) 907–919
Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
A new and general formulation of the parametric HFGMC micromechanical method
for two and three-dimensional multi-phase composites

Rami Haj-Ali a,b,⇑, Jacob Aboudi a

a School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv 69978, Israel
b Georgia Institute of Technology, Atlanta, GA 30332, USA

a r t i c l e i n f o
Article history:
Received 30 April 2012
Received in revised form 29 October 2012
Available online 5 December 2012

Keywords:
High fidelity generalized method of cells
HFGMC
Multiphase composites
Arbitrary geometry
Micromechanics
Unit-cell
0020-7683/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.ijsolstr.2012.11.009

⇑ Corresponding author at: School of Mechanical E
neering, Tel-Aviv University, Ramat-Aviv 69978, Israe
+972 3 640 7617.

E-mail address: rami98@eng.tau.ac.il (R. Haj-Ali).
a b s t r a c t

The recent two-dimensional (2D) parametric formulation of the high fidelity generalized method of cells
(HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional
(3D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is
developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping
is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary
orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the
2D case, additional three equations are needed in the form of average moments of equilibrium as a result
of the inclusion of the bilinear terms. However, the present 3D parametric HFGMC formulation eliminates
the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic
polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2D
parametric and orthogonal HFGMC are special cases of the present 3D formulation. The continuity of dis-
placements and tractions, as well as the equilibrium equations, are imposed in the average (integral)
sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent
average displacement micro-variable vector which forms an energy-conjugate pair with the transformed
average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting
vectors for the subcells which enhances the computational efficiency. The established new parametric 3D
HFGMC equations are formulated and solution implementations are addressed. Several applications for
triply periodic 3D composites are presented to demonstrate the general capability and varsity of the pres-
ent parametric HFGMC method for refined micromechanical analysis by generating the spatial distribu-
tions of local stress fields. These applications include triply periodic composites with inclusions in the
form of a cavity, spherical inclusion, ellipsoidal inclusion, and discontinuous aligned short fiber. A 3D
repeating unit-cell for foam material composite is simulated.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Early analytical three-dimensional micromechanical models
have been concerned with homogenization methods able to gener-
ate the effective elastic properties of composites. A classical ap-
proach employs the Eshelby (1957) single inclusion elasticity
solution in a homogenization scheme, e.g. the self consistent
scheme and its generalizations, Christensen (1979), and Mori and
Tanaka (1973) methods. The latter approach has been widely used
in the literature and extensions from single to double or nested
inclusions have been reported, e.g. Hori and Nemat-Nasser
(1993). Highlights of further extensions to compute the effective
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viscoelastic and inelastic composites has been given by Wang
and Weng (1992) and Gavazzi and Lagoudas (1990), for example.
Additional extensions to composites with inelastic matrix and
progressive failure including debonding have been proposed by
Ju and Tseng (1996). The latter models have been generalized by
Ju and Sun (2001) to develop a 3D statistical micromechanical
damage modeling framework for multiphase brittle composites
with combinations of interacting microcracks and inclusions.
Finally, combined damage 3D micromechanics have been formu-
lated and applied to functionally graded materials by Paulino et
al. (2006).

A different 3D micromechanics approach is to use discrete based
subvolumes where expansion of the displacement is carried out in
order to capture the local fields. To this end, the classical
displacement-based nonlinear FE method has been widely utilized,
e.g. Levy and Papazian (1990). Jain and Ghosh (2008, 2009) used an
extension from their 2D to 3D microstructural RVE model with
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Voronoi cell elements including damage. Multi-level variational
formulation has been achieved to construct 3D micromechanics
with and without damage, e.g. Fish et al. (1999). Finally the previ-
ous micromodels and other simplified 3D micromechanics have
been used for local–global structural analysis. Towards that end,
the lower-order GMC has been developed for 3D composites. Thus,
Haj-Ali et al. (2001) developed a nested 3D micromodels for nonlin-
ear multi-scale pultruded composite structures. Muliana and Kim
(2007) employed a simplified 3D micromodel using relatively small
number of subcells for the viscoelastic multi-scale analysis of com-
posite structures. The GMC has been utilized by Pahr and Arnold
(2002) for the analysis of metal matrix composites with discontin-
uous fibers, by Bednarcyk and Arnold (2003) for the modeling of
woven composites, and by Liu et al. (2011) for a multiscale analysis
of triaxially braided composites. The higher-order regular orthogo-
nal 3D-HFGMC has been employed by Bednarcyk et al. (2008) in
their investigation of the foam insulation of the space shuttle.

Refined micromechanics is a class of nonlinear micromechani-
cal models capable not only to predict the instantaneous effective
stiffness of a periodic heterogeneous medium, but also to accu-
rately predict the local spatial distributions of the deformations
within the repeating unit-cell (RUC). The latter requirement is
needed in order to use such modeling for nonlinear material re-
sponse along with potential localized damage, e.g. microcracking,
fiber–matrix interface debonding, material defects and imperfec-
tions, among other modes.

The HFGMC method is a higher-order refined micromechanical
theory and has evolved from its lower-order predecessors, the
method of cells (MOC) (Aboudi, 1982, 1991), and the generalized
method of cells (GMC) (Paley and Aboudi, 1992), respectively.
The HFGMC micromechanical model is well suited for detailed
nonlinear analysis of multiphase composites, Aboudi (2004). Un-
like general classical numerical methods such as finite element
(FE) and finite-volume (FV), the HFGMC is tailored and specialized
to micromechanics of periodic composites. It is explicitly based on
micromechanical variables needed to establish the elastic and
inelastic concentration tensors of the phases in addition to the de-
tailed local fields. The formulation of the HFGMC is performed
using average equilibrium, traction and displacement continuity
equations. This is because it aims to strike a balance between sim-
plicity and accuracy without the need for excessive number of dis-
crete sub-volumes (subcells). The computational affordability is
especially important when HFGMC is integrated within a nonlinear
analysis of composite structures including localized effects, often
called multi-scale or local–global modeling.

Several applications and implementations of the HFGMC have
been performed to model different physical effects in periodic com-
posites, such as coupled electro-magneto-thermo-elastic (Aboudi,
2001), viscoelastic-viscoplastic micromechanics (Aboudi et al.,
2002, 2003; Aboudi, 2005), bond damage of fiber (Bednarcyk et al.,
2004; Ryvkin and Aboudi, 2007). A review of the method and appli-
cation for HFGMC applied to smart materials can be found in Aboudi
(2007) and Aboudi and Freed (2010). Damage evolution effects have
been introduced within HFGMC by Haj-Ali and Aboudi (2009), Bed-
narcyk et al. (2010) and Aboudi (2011). These include cohesive
growth between the subcells, cell extinction damage (CED), isotro-
pic and anisotropic damage evolutions in unidirectional composites.
A comprehensive recent reference to the HFGMC method with wide
range of applications can be found in Aboudi et al. (2013).

The original HFGMC formulations have been performed in con-
junction with orthogonal array of subcells used to depict the geom-
etry of the phases (regular array). This limitation requires a
relatively large number of subcells if the objective is to accurately
capture refined geometrical features and the spatial variations of
the local solution fields. Despite this limitation, the previous appli-
cations have demonstrated the effectiveness of the method to
generate the local solution fields by using sufficiently large number
of rectangular subcells. It should be emphasized that few number
of rectangular subcells is sufficient to generate the effective linear
and nonlinear response for the overall composite with high accu-
racy. In fact, this is one of the advantages of using the HFGMC in
a local–global analysis of composite structures with selective geo-
metrical refinement for the microstructure (Haj-Ali and Aboudi,
2009).

A natural extension that overcomes the limitations of the regu-
lar orthogonal array is to employ a parametric mapping. To this
end, Haj-Ali and Aboudi (2010) used linear geometrical mapping
of the subcells to map the geometry of the phases of the composite.
This linear and parametric geometric mapping can be applied for a
unit-cell with general phase geometry using arbitrary quadrilateral
cell shapes that are transformed to an auxiliary uniform square
shape (natural coordinates). It is important to note that while the
geometric mapping is linear, the subcell displacement expansion
is of a full quadratic form (subparametric). In addition, the com-
plete form of the Jacobian transformation has been employed with-
out approximation which necessitates a numerical integration of
the HFGMC equations. The utilization of a full quadratic expansion
vector with its bilinear terms in a subcell required three additional
equations which were chosen as the average moment of the equi-
librium equations. It was emphasized by authors that this choice is
not optimal and further research is needed to reach a proper form
of the needed relations.

In the present investigation, a generalization of the parametric
HFGMC to 3D multiphase composites with periodic microstructure
is offered. To this end, general hexahedral subcells are introduced
to model triply-periodic composites. Here too, the full quadratic
displacement expansion is still used within the parametric HFGMC.
However, we now show that the average displacement vectors at
the edges (or faces) of the subcell can be expressed in terms of
the coefficients of the expansion to form an independent subset
of side-based variables. Furthermore, it is shown that correspond-
ing transformed average-traction at the edges are conjugate pairs
to the average displacements. In this way, two outcomes can be
achieved. In the first, relations for the bilinear terms can be estab-
lished with the quadratic coefficients of the displacements and
thus no need for additional moment of equilibrium relations. In
the second outcome, the energy conjugate pair result in symmetric
linearized form of the overall HFGMC equations with obvious com-
putational advantages. The present new 3D parametric HFGMC
generalization allows the analysis of composites with general
shape of inclusions. The 2D parametric HFGMC can be obtained
as a special case of the present formulation.

This paper is organized as follows. In Section 2, the general
theory to 3D parametric HFGMC is presented including the
2D-HFGMC as a special case. In Section 3, computational imple-
mentation aspects are described and discussed. Wide range of
applications are given in the next Section, followed by concluding
remarks.
2. General formulation

The HFGMC micromechanical method is presently extended
for general parametric formulation suitable for three-dimensional
(3D) analysis of multiphase composite materials. Fig. 1 schemat-
ically illustrates a triply-periodic multiphase material system
having a global coordinates ðx1; x2; x3Þ. The repeating unit cell
(RUC) of this periodic composite can be identified and described
by using the coordinate system ðy1; y2; y3Þ. The goals of the
HFGMC micromechanical method, based on the homogenization
technique for periodic composites, are to predict the overall effec-
tive properties as well as the spatial local deformation fields. In



Fig. 1. Schematic illustration of a triply periodic array in the global ðx1; x2; x3Þ space
of multiphase composite media with its repeating unit-cell (RUC) having hexahe-
dral subcells, defined with respect to its ðy1; y2; y3Þ local coordinate system.

Fig. 2. A hexahedral shaped subcell in its physical and natural coordinates.
Numbering for the faces and corners are shown.
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the HFGMC framework, the RUC is divided into array of cells, of-
ten denoted as subcells. In the present section, this method is ex-
tended to analyze an RUC of a triply-periodic composite with
irregular array of generally shaped hexahedral subcells. Fig. 1
shows a schematic RUC domain which is discretized into a gen-
eral assembly of hexahedral subcells to represent the different
phase geometries. Fig. 2 shows a general hexahedral subcell iso-
lated and shown in its physical coordinates ðy1; y2; y3Þ. This sub-
cell is mapped to a uniform parametric coordinate system
ðr; s; tÞ using the classical linear transformation

yiðr; s; tÞ ¼
X8

k¼1

Hkðr; s; tÞyki; i ¼ 1;2;3 ð1Þ

where yi; i ¼ 1;2;3, are the coordinates of a general point within
the subcell ðbÞ mapped from the parent parametric coordinates to
the physical RUC coordinates, and

H1 ¼
1
8
ð1� rÞð1� sÞð1� tÞ; H5 ¼

1
8
ð1� rÞð1� sÞð1þ tÞ

H2 ¼
1
8
ð1þ rÞð1� sÞð1� tÞ; H6 ¼

1
8
ð1þ rÞð1� sÞð1þ tÞ

H3 ¼
1
8
ð1þ rÞð1þ sÞð1� tÞ; H7 ¼

1
8
ð1þ rÞð1þ sÞð1þ tÞ

H4 ¼
1
8
ð1� rÞð1þ sÞð1� tÞ; H8 ¼

1
8
ð1� rÞð1þ sÞð1þ tÞ ð2Þ

and yki are the corner coordinates of the subcell.
In the present 3D HFGMC formulation, the complete quadratic
form of the displacement expansion in the subcell, is given by

u ¼ �0 � xþW000 þW100r þW010sþW001t þW110rsþW101rt

þW011st þ 1
2

W200ð3r2 � 1Þ

þ 1
2

W020ð3s2 � 1Þ þ 1
2

W002ð3t2 � 1Þ ð3Þ

where the applied remote global-scale displacement field is gi-
ven by u0 � �0 � x. This expansion is a direct extension of the
full quadratic expansion which has been used by Haj-Ali and
Aboudi (2010) in the case of the parametric HFGMC for dou-
bly-periodic composites. However, in the present parametric for-
mulation, the mixed bilinear terms of this expansion are shown
to be dependent variables. This resolves the open question that
has been raised by Haj-Ali and Aboudi (2010) on the optimal
method that should be used to determine these terms. Previ-
ously, the bilinear terms have treated as independent variables
and consequently additional moment of equilibrium equations
should have introduce to determine them. To this end, let us
define the average displacement vector on the six faces of the
hexahedral subcell:

�uðbkÞ ¼ 1
Ak

Z
Ak

uðbÞðyÞdAk¼
1
4

Z 1

�1

Z 1

�1
uðbÞðnk;gkÞdnkdgk; k¼1;2; . . . ;6

ð4Þ

where (nk;gk) are the surface parametric integration variables of
the kth edge or face of the subcell denoted by (bk). The above inte-
gration provides the six vectors of the surface-average displace-
ments expressed in terms of the expansion coefficients W ðlmnÞ as
follows:
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�uðb1Þ

�uðb2Þ

�uðb3Þ

�uðb4Þ

�uðb5Þ

�uðb6Þ

W000

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
�

�u0;ðb1Þ

�u0;ðb2Þ

�u0;ðb3Þ

�u0;ðb4Þ

�u0;ðb5Þ

�u0;ðb6Þ

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
�

W1

W2

W3

W4

W5

W6

W0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

0 0 �1 0 0 1 1
0 0 1 0 0 1 1
0 �1 0 0 1 0 1
1 0 0 1 0 0 1
0 1 0 0 1 0 1
�1 0 0 1 0 0 1
0 0 0 0 0 0 1

2
666666664

3
777777775

W100

W010

W001

W200

W020

W002

W000

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð5Þ

The inverse relation of Eq. (5) is given by:

W100

W010

W001

W200

W020

W002

W000

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼ 1
2

0 0 0 1 0 �1 0

0 0 �1 0 1 0 0

�1 1 0 0 0 0 0

0 0 0 1 0 1 �2

0 0 1 0 1 0 �2

1 1 0 0 0 0 �2

0 0 0 0 0 0 2

2
6666666666664

3
7777777777775

W1

W2

W3

W4

W5

W6

W0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð6Þ

It can be readily observed that the bilinear coefficients
W110; W101; W011 do not contribute to the average displacements.
Thus it is possible to assume that these are dependent coefficients if
our aim is to use the average displacements as the primary indepen-
dent variables. Hence, two possible solutions can be identified. The
first trivial case is to assume that the bilinear terms to be zero:

W110 ¼W011 ¼W101 ¼ 0 ð7Þ

This solution generates a truncated quadratic expansion that may
affect the spatial distribution of the elastic fields. However, the
average strain in the subcell, directly responsible for the overall
elastic effective stiffness of the RUC, is not affected due to the
vanishing integration of the bilinear terms in the hexahedral
domain.

Alternatively, a non-trivial solution can be obtained while
retaining the complete quadratic expansion (3), maintaining
terms’ symmetry and frame indifference of this polynomial form.
Here

W110 ¼
1
2

W200 þW020ð Þ ¼ 1
4

W3 þW4 þW5 þW6 � 4W0ð Þ

W011 ¼
1
2

W020 þW002ð Þ ¼ 1
4

W1 þW2 þW3 þW5 � 4W0ð Þ

W101 ¼
1
2

W200 þW002ð Þ ¼ 1
4

W1 þW2 þW4 þW6 � 4W0ð Þ ð8Þ

It can be verified that the average displacement relations given by
Eq. (5) are maintained with the trivial and the non-trivial forms
given for the bilinear terms, Eqs. (7) and (8), respectively. Eq. (8)
can be considered as unique if the objective is to link the mixed
bilinear coefficients with the higher order ones and yet maintain
the average displacement relations with terms’ symmetry and
frame indifference. It should be noted that the trivial case is a di-
rect result of the original HFGMC formulation, e.g. Aboudi (2004),
for orthogonal and regular array of subcells where both physical
and natural coordinates coincide and the Jacobian of the mapping
is constant. As a result of the above derivations it is possible to re-
write the displacement expansion (3) in the following compact
form:
u ¼ �0 � xþW0 þ
1
2

W4 �W6ð Þr þ 1
2

W5 �W3ð Þs

þ 1
2

W2 �W1ð Þt

þ 1
4

W4 þW6 � 2W0ð Þ 3r2 þ rsþ rt � 1
� �

þ 1
4

W3 þW5 � 2W0ð Þ 3s2 þ rsþ st � 1
� �

þ 1
4

W1 þW2 � 2W0ð Þ 3t2 þ rt þ st � 1
� �

ð9Þ

It is worth mentioning that in the special case of 2D parametric
HFGMC for doubly-periodic composites, the above expansion takes
the form:

u ¼ �0 � xþW0 þ
1
2

W4 �W6ð Þr þ 1
2

W5 �W3ð Þs

þ 1
4

W4 þW6 � 2W0ð Þ 3r2 þ rs� 1
� �

þ 1
4

W3 þW5 � 2W0ð Þ 3s2 þ rs� 1
� �

ð10Þ

where Wk follows the labeling of the quadrilateral subcell of Haj-Ali
and Aboudi (2010). In this case, the bilinear term coefficients W11

takes the following trivial and non-trivial forms, respectively:

W11 ¼ 0; W11 ¼
1
2

W20 þW02ð Þ ð11Þ

As mentioned above, this answers the open question raised by the
authors on the optimal way of handling the bilinear terms in the
2D case.

In order to establish the expressions for the strain components,
the displacement gradients with respect to the physical coordi-
nates y are needed. The standard Jacobian of the linear transforma-
tion (1) is given by:

J � @ y1; y2; y3ð Þ
@ r; s; tð Þ ¼

@y1
@r

@y2
@r

@y3
@r

@y1
@s

@y2
@s

@y3
@s

@y1
@t

@y2
@t

@y3
@t

2
664

3
775 ð12Þ

Its inverse is denoted by Ĵ � J�1 ¼ @ r; s; tð Þ=@ y1; y2; y3ð Þ and used to
relate the displacement derivatives as

u;1

u;2

u;3

8><
>:

9>=
>;
ðbÞ

¼ Ĵ
h iðbÞ u;r

u;s

u;t

8><
>:

9>=
>;
ðbÞ

ð13Þ

The right-hand-side can be easily established by using Eq. (3)
yielding

uðbÞ;r ¼W100 þW110 sþW101 t þ 3W200 r

uðbÞ;s ¼W010 þW110 r þW011 t þ 3W020 s

uðbÞ;t ¼W001 þW101 r þW011 sþ 3W002 t ð14Þ

However, in order to express these gradients in terms of the average
displacement micro-variables of the six hexahedral faces, we first
define the following subcell vector with its components lumped
in the following order

W ðbÞ;T ¼ W1i;W2i;W3i;W4i;W5i;W6i;W0if gðbÞ i ¼ 1;2;3 ð15Þ

Next, Eqs. (6) and (8) are used for the non-trivial case to obtain,
after some manipulations, the displacement gradients with respect
to the parametric variables as follows
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u;r

u;s

u;t

8><
>:

9>=
>;
ðbÞ

¼ M½ �ðbÞ

W1

W2

W3

W4

W5

W6

W0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðbÞ

ð16Þ

where the matrix M½ �ðbÞ is given by
1
4

t t s 6r þ sþ t þ 2 s 6r þ sþ t � 2 �4ð3r þ sþ tÞ
t t r þ 6sþ t � 2 r r þ 6sþ t þ 2 r �4ðr þ 3sþ tÞ

r þ sþ 6t � 2 r þ sþ 6t þ 2 s r s r �4ðr þ sþ 3tÞ

2
64

3
75 ð17Þ
Similarly, Eqs. (6) and (7) provide the gradients for the trivial case as

u;r

u;s

u;t

8><
>:

9>=
>;
ðbÞ

¼ 1
2

0 0 0 3rþ1 0 3r�1 �6r

0 0 3s�1 0 3sþ1 0 �6s

3t�1 3tþ1 0 0 0 0 �6t

2
64

3
75

W1

W2

W3

W4

W5

W6

W0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðbÞ

ð18Þ

The spatial form of the strains in a given cell ðbÞ are defined by

�ðbÞij ðyðr; sÞÞ ¼ �
0
ij þ

1
2

@ui

@yj
þ @uj

@yi

 !
ð19Þ

It is possible to bring the strains into a general matrix form

�ðbÞ ¼ �0 þ AðbÞW ðbÞ ð20Þ

where the strain vector notation � is defined by

�T ¼ �11; �22; �33;2�23;2�13;2�12f g ð21Þ

and AðbÞ is the matrix that relates the strain to the displacement
microvariables. The size of the vector W ðbÞ is 21 which includes
all the microvariables of subcell ðbÞ as shown in Eq. (15). Using
Eqs. (17) and (18), respectively, along with Eqs. (13) and (19), it is
possible to derive the strain–displacement matrix, AðbÞ. The non-
zero components of this matrix are listed in the Appendix for the
trivial and non-trivial bilinear terms.

Next, we define average traction vector �T ðbkÞ on the six sides of
the hexahedral subcell defined by

�T ðbkÞ ¼ 1
Ak

Z
Sk

rðbÞðyÞ � nðbkÞdSk

¼ 1
4

Z 1

�1

Z 1

�1
rðbÞðr; s; tÞ � nðbkÞdnkdgk; k ¼ 1;2; . . . ;6 ð22Þ

where nðbkÞ is the unit normal vector to the kth side of subcell ðbÞ.
The stress field, rðbÞ, is given by

rðbÞ ¼ CðbÞ : �ðbÞ ð23Þ

assuming a linear material behavior of the subcell, with CðbÞ being
the stiffness of the material in the subcell. Since the geometry is
interpolated using linear mapping, the normal vector nðbkÞ to each
of the six faces is constant. Employing the established spatial strains
in the cell to obtain the corresponding stresses. The latter are used
in the expression for the average tractions, Eq. (22). This provides

�T ðbkÞ ¼ 1
4

Z 1

�1

Z 1

�1
NðbkÞCðbÞ �0 þ AðbÞW ðbÞ

h i
dnkdgk

¼ NðbkÞCðbÞ �0 þ �AðbkÞW ðbÞ
h i

ð24Þ

with,
NðbkÞ ¼
n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0

2
64

3
75
ðbkÞ

ð25Þ

and

�AðbkÞ ¼ 1
4

Z 1

�1

Z 1

�1
AðbÞdnkdgk ð26Þ

As mentioned above, due to the applied linear mapping, the NðbkÞ

matrix is constant.
Following the original HFGMC formulation, we impose the dis-

placements and tractions continuity between the subcells. These
conditions are enforced in an average integral sense. In addition,
periodicity conditions are imposed between the boundary subcells
of the RUC by requiring that the displacements and tractions be
continuous at these mirrored interfaces. The third major require-
ment of the HFGMC method is the intra subcell equilibrium ap-
plied in a volumetric average form. In the following, the above
transformed expressions for the average displacements and trac-
tions, (4) and (24), respectively can readily be used to impose the
HFGMC equations. The displacements and tractions continuity
can be written as

�uðbkÞ ¼W ðbÞ
k ¼ �uðcmÞ ¼W ðcÞ

m ; �T ðbkÞ ¼ �T ðcmÞ ð27Þ

where ðbkÞ denotes the kth interface (side) of subcell ðbÞ and ðcmÞ is
neighboring mth interface side of subcell ðcÞ. The displacement and
traction periodicity conditions are imposed as in Eq. (25), but with
cell ðbÞ and ðcÞ located on opposite sides of the RUC.

The equilibrium equations for each subcell are imposed in an
average sense in conjunction with Divergence theorem in order
to utilize the derived expressions for the average tractions as
follows.Z

V
r � rdV ¼

Z
S
r � ndS ¼

X6

k¼1

Z
Sk

NðbkÞrðbÞdSk ¼
X6

k¼1

Ak
�T ðbkÞ ¼ 0

ð28Þ

where V and S are the volume and surface of the ðbÞ-subcell, respec-
tively, and Ak is the area of the kth side.

The total number of unknown microvariables in the RUC is 21Nc

where Nc is the total number of subcells every one of which has 21
microvariables, see Eq. (5). The number of continuity and periodic-
ity equations for displacements is 3� 3Nc (only three interfaces for
each subcell provide independent relations), see the first equality
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in Eq. (27). Similarly, the number of traction continuity and period-
icity equations is 3� 3Nc as shown by the second equality in Eq.
(27). The average equilibrium relations, Eq. (28), provide additional
3Nc equations.

The above formulation completes the full theoretical derivation
of the general three-dimensional parametric HFGMC microme-
chanical method. However, it is interesting to introduce an internal
force vector IðbÞ that form energy conjugate pairs with the average
displacements of each side of the subcell, W ðbÞ. The internal force
vectors are directly related to the average traction defined above.
These force resisting vectors are defined using external and inter-
nal work balance:

W ðbÞ;T IðbÞ �
Z

V
�ðbÞ;T � �0;T� �

rðbÞdV ¼
Z

V
W ðbÞ;T AðbÞ;TrðbÞdV ð29Þ

and since W is arbitrary, the expression for the internal resisting
vector is

IðbÞ ¼
Z

V
AðbÞ;TrðbÞdV ð30Þ

The above work balance is known in the mechanics of heteroge-
neous media as the principal of average virtual work, e.g. Christen-
sen (1979). For the linear material case,

IðbÞ ¼
Z

V
AðbÞ;T Cdv

� �
�0;ðbÞ þ

Z
V

AðbÞ;T CAðbÞdv
� �

W ðbÞ ð31Þ

We further recognize that the first six vectors within IðbÞ are the
average forces, IðbkÞ, on each face or side of the hexahedral subcell.
The use of the above form of the average internal resisting vector,
IðbkÞ, instead of the average traction, �T ðbkÞ, in the traction continuity
relation and average equilibrium, Eqs. (27) and (28), respectively,
provide enhanced computational advantage mainly expressed by
using the symmetric matrices in Eq. (31).

3. Implementation and computational aspects

The assembly of the derived 21� Nc HFGMC governing equa-
tions of the RUC are solved to obtain the unknown 21 microvari-
ables for each cell. In general, equations can symbolically be
grouped into three parts in the form

1ðþÞu � 1ð�Þu

IðþÞT þ Ið�ÞTP
IT

2
64

3
75 Wf g þ

0
DðþÞT � Dð�ÞTP

DT

2
64

3
75 f�0 g ¼

0
0
0

8><
>:

9>=
>; ð32Þ

where the first part (row) represents the average continuity and
periodicity of the displacements, the second part represents the
continuity of the tractions in a similar fashion. The third part repre-
sents the equilibrium equations for all the cells. The above system
of equations is solved for a given externally applied strain �0 to ob-
tain the cell microvariables. Furthermore, the local spatial strains
can be readily obtained using Eq. (20), which leads to the spatial
distribution of the stresses in the RUC. These can be used, for exam-
ple, in a progressive analysis to determine possible damage in the
constituents as well as interfacial debonding, see Haj-Ali and Abou-
di (2010) for the parametric 2D-HFGMC case.

Since the first part of these equations are homogeneous and
each row is composed of only two terms, expressing interface aver-
age displacement continuity becomes a straight forward manner. A
pre-analysis overall RUC equivalence of matching subcells’ faces
can be performed similar to nodal equivalence carried out in the
FE method. This can be done at the global level of the code or even
using simple preprocessing subroutines. Furthermore, the equilib-
rium equation for each subcell, Eq. (28), expressed in either �T ðbkÞ or
IðbkÞ, can be used in conjunction with a static condensation of the
internal dependent displacement microvariables, W ðbÞ

0 . This leaves
the six-side average displacements as the only set of independent
variables for each subcell, which results in computational saving.
The effective elastic properties of the multiphase composite can
be obtained from the cell strain concentration tensors GðbÞ which
relates the average strain in the subcell to the externally applied
strain. The latter is established by considering the average strain
of the cell having the form

��ðbÞ ¼ 1
V

Z
V
�ðyÞdV ¼ �0 þ 1

2V

Z
V
ryuþ ury
� �

dV ð33Þ

By using the Divergence theorem and the linear mapping, Eq. (30)
takes the form

��ðbÞ ¼�0þ 1
2V

Z
S

u�nþn�uð ÞdS¼�0þ 1
2V

X6

k¼1

Ak �u�nþn� �uð ÞðbkÞ �GðbÞ :�0

ð34Þ

It is observed from Eq. (34) that the concentration tensor GðbÞ

depends on the average displacement vectors on the surfaces of
the cell. Those can be computed only after solving the entire
HFGMC system of equations for the RUC as discussed above. Once
the concentration tensors GðbÞ have been obtained, the effective
elastic stiffness tensor C� is evaluated in the form

C� ¼
XNc

b¼1

vbCðbÞGðbÞ ð35Þ

where vb ¼ V ðbÞ=VRUC , and VRUC being the total volume of the RUC.
It is also possible to use the intact overall system of equations,

Eq. (32), without side-based condensation between the displace-
ment microvariable. This approach allows the formulation of a
new micromechanical damage approach, termed cell-extinction-
damage (CED). As has been demonstrated by the 2D-HFGMC,
Haj-Ali (2009) and Haj-Ali and Aboudi (2010), this cohesive micro-
mechanical approach has the ability to perform subcell degrada-
tion along with general traction–separation between the subcells.
In addition, the structure of exclusive interface-based equations
unlike nodal-based FE, makes it easier to remove the subcells from
the problem and/or generate average-based traction-free surfaces
for crack propagation within the RUC without introducing compu-
tational instabilities.

As mentioned, linear geometric mapping and quadratic dis-
placement interpolation (subparametric formulation) has been
carried out in the previous section. This formulation has been done
in order to simplify the numerical integration. Having said that,
extension to full quadratic geometric mapping (isoparametric for-
mulation) is straightforward. In both of these cases, numerical
integration of the equations is needed since the Jacobian matrix
is not constant. However, a computational implementation of the
2D parametric HFGMC has been reported in the literature under
the name ‘‘FVDAM’’, e.g. Bansal and Pindera (2006). This latter
2D method assumes a volume-based constant Jacobian of the lin-
ear mapping for the geometry of the subcells. Their assumption
imposes severe limitation and restriction on the parametric
HFGMC method as the shape of the subcells need to be close to
rectangular or parallelograms in order to maintain accurate depic-
tion of the geometry. The use of an a priori constant Jacobian
amounts to a one center-point quadrature and may lead to large
solution errors especially in the displacement gradients. Further-
more, the assumption of a constant Jacobean is not applicable in
the general 3D HFGMC that has full quadratic displacements. Thus,
the proposed 3D parametric HFGMC has been formulated in a di-
rect and general manner, i.e. retaining the full quadratic expansion
of the displacement together with the complete Jacobian. For a
more elaborate discussion on the ‘‘FVDAM’’ as a special case of
the parametric 2D-HFGMC, see Haj-Ali and Aboudi (2012). The le-
vel of computational accuracy is determined by the number of



Fig. 3. Parametric HFGMC meshes for an RUC with spherical cavity.

(a) (b)

(c)

Fig. 4. Stress distributions in the RUC with a spherical cavity. (a) HFGMC results
(periodic displacements), (b) FE results (periodic displacements), and (c) HFGMC
results (periodic displacements and tractions).
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integration points specified within the subcell during the numeri-
cal integration of the governing equations.

It is important to draw the distinctions between the proposed
parametric HFGMC and the classical displacement-based finite-
element (FE) method, where a common misconception has been
to link the HFGMC to FE. In the FE formulation the displacement
continuity between two adjacent and connected elements is satis-
fied in a pointwise manner by sharing the same nodal degrees of
freedom at the sides of an element. However, the HFGMC quadratic
displacement expansion is nonconforming and displacement con-
tinuity is satisfied in an average sense between adjacent cells.
The latter is an approximation that allows the HFGMC to explicitly
use additional stress variables in the formulation and directly ap-
ply average traction continuity. The advantage of this approach is
that both traction and displacement interface continuity between
different materials can be directly employed. Further, cohesive
damage modeling can be easily employed as mentioned before
for the 2D case. Unlike FE, the HFGMC is a specialized microme-
chanical modeling framework in which the remote fields are di-
rectly tied to the micromechanical formulation (e.g. the remote
average strain is directly used in the HFGMC formulation). On
the other hand, the periodicity in the FE formulation is imposed
only through displacement boundary conditions, while in the
HFGMC, the periodic boundary conditions are imposed directly
using both the average displacement and tractions. The latter dif-
ferences are illustrated in the next application section where
examples for RUCs with both traction and displacement periodic
conditions are compared to FE RUCs modeled with applied far-field
nodal displacements. Having said that, it is possible to draw an
analogy between the FE (standard or hybrid forms) and the HFGMC
method by considering the average displacement microvariables as
face or side-based generalized displacements variables. This anal-
ogy allows the use of the average virtual work principal to define
the internal force vector and its associate symmetric matrices
which are useful for the solution of the overall system of equations.
Therefore, the HFGMC is a micromechanical method of analysis
that should be viewed as a stand-alone method of solution on its
own right. It has been shown that it offers a specialized combined
local and global solution fields suitable for the analysis of periodic
composites. The present HFGMC-3D subcell has 21 independent
quadratic coefficient variables with linear geometric parametric
mapping. As for computational efficiency, it will be difficult to di-
rectly compare the HFGMC with an isoparametric FE element. Hav-
ing said that, the offered HFGMC parametric quadratic formulation
provides an additional computational efficiency as compared to
the 24 variables that belong to a linear-based 3D finite element.

4. Applications

Several applications are performed to show the effectiveness
of the parametric HFGMC method in capturing the spatial stress
field distributions within the phases of triply periodic compos-
ites. To this end, RUCs are generated with coarse and refined res-
olutions using hexahedral subcells. Selected stress fields are
compared with solutions of RUCs using displacement based FE
models. In order to compare the parametric HFGMC and the FE
solutions, the full periodic conditions between the boundary sur-
faces of the RUC, i.e. both traction and displacement continuity
on mirrored boundary surfaces, were not applied. It is important
to mention that the full periodic conditions are an integral part
of the HFGMC formulation, however, full periodicity is not a
straightforward using the displacement-based FE. Thus, the
boundary conditions imposed in all compared cases, unless sta-
ted otherwise, are:

u0ðSÞ ¼ �0 � x ð36Þ
where ðSÞ here is the outside periodic surface of the RUC, �0 is the
applied average strain and x are the coordinates of the surface
points. In the case of the FE-RUC, constrains were written for the
boundary nodes that link their degrees of freedom to the applied
average strain. However, for the case of the RUC modeled with
the HFGMC, the average displacement microvariables on the
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Fig. 6. Stress distributions in the RUC with a spherical inclusion. (a) HFGMC results,
(b) FE results.
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subcells with boundary faces were set to zero. Select cases for
HFGMC-RUCs with full periodic boundary conditions are presented
in order to show the different spatial distribution of the local fields
that the can be achieved using the HFGMC.

The first RUC model is for a medium with repeated spherical
cavities, thus forming a porous material. Fig. 3 shows the geometry
of this problem in the form of a half RUC cut at the mid-plane and
another with a quarter portion removed. It should be mentioned
that while it is possible to apply symmetric conditions, the full
geometry is simulated. The dimensions of the RUC were taken as
D ¼ H ¼ L ¼ 1 and the radius of the spherical cavity was R ¼ 0:4.
The material Young’s modulus and Poisson’s ratio elastic proper-
ties are E = 4.8 GPa, m = 0.34. The composite is subjected to a re-
mote uniaxial strain loading of �0

11 ¼ 0:01. The number of
hexahedral subcells used to map the geometry was Nc ¼ 3584. This
discretization of the RUC is not considered as a refined one com-
pared to the number of subcells needed to capture the local spher-
ical shape curvature. This was the choice in order to demonstrate
the ability of the HFGMC to accurately solve for the local fields de-
spite the use of average traction and displacements. Fig. 4(a) and
(b) show the r11 stress distributions for the HFGMC and the FE
models, respectively. In these two cases, only the displacement-
based periodic conditions were enforced. It is clear that the stress
distribution from the HFGMC solution is quite identical to the one
obtained from the FE model despite the use of relatively smaller
number of independent solution variables. As mentioned, each
subcell has 21Nc total independent average displacement
microvariables in the case of the HFGMC among of which many
dependent displacements are condensed due to subcells inter-
continuity at the global system of equations as discussed in the
implementations section. Therefore, the element that was selected
for the FE RUC cases is the 8-nodes linear brick which has
8� 3� Nc ¼ 24Nc number of variables having both RUCs close in
their problem size. Fig. 4(c) shows the stress distribution generated
Fig. 5. Parametric HFGMC 3D meshes for an RUC with spherical inclusion using
hexahedral subcells.
by the HFGMC, however, the full periodic conditions were applied
in this case. It is evident that the local spatial distribution is
affected at the boundaries of the RUCs if accurate periodicity needs
to be captured. In the case where the effective elastic properties of
the entire medium are sought, applying full or partial periodic
conditions may not yield pronounced differences. Our aim in the
parametric HFGMC is to provide an analysis tool capable of
accurately predicting the local fields.
Fig. 7. Parametric HFGMC 3D meshes for an RUC with spheroidal inclusion using
hexahedral subcells.
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Fig. 8. Stress distributions in the RUC with a spheroidal inclusion. (a) HFGMC
results, (b) FE results.

(a)

(b)

Fig. 10. Stress distributions in the RUC with the discontinuous fiber. (a) HFGMC
results, (b) FE results.
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The next application deals with a composite with spherical
inclusions, thus forming a particulate composite. Fig. 5 shows the
discretized RUC with D ¼ H ¼ L ¼ 1 and the radius of the spherical
inclusion is R ¼ 0:4, which corresponds to inclusion volume
fraction of 26.8%. An effort has been made to use a refined mesh
at the interface of the spherical inclusion. The elastic properties
of the inclusion and the matrix are: E = 380 GPa, m = 0.1 and E =
4.8 GPa, m = 0.34, respectively. The far field applied strain is
�0

33 ¼ 0:01. The number of hexahedral subcells used for both
HFGMC and FE is Nc ¼ 74088. Fig. 6(a) and (b) show the Mises
stress distributions as predicted by the HFGMC and the FE,
respectively, in the direction of the applied strain. Here, excellent
agreement between the two solutions is exhibited. As a continua-
tion of this problem, we consider an ellipsoidal inclusion, the mesh
of which is shown in Fig. 7. It illustrates a half RUC with removed
inclusion and the ellipsoidal inclusion. A coarser mesh is used for
the latter in order to minimize the size of the problem:
Nc ¼ 54872. The dimensions of the RUC are D ¼ H ¼ L ¼ 1 and
the major and two minor axes of the ellipsoid are 0:8; 0:4 and 0:4
(spheroidal shape), respectively. The same elastic properties for
the inclusion and matrix as well as the magnitude of the applied
far field are chosen as in the previous problem. Fig. 8 displays
the resulting stress r33 distribution in the major-axis direction of
Fig. 9. Parametric HFGMC 3D meshes for an RUC, with discontinuous aligned fiber
having a circular cross-section, using hexahedral subcells.

Fig. 11. Parametric HFGMC mesh for an RUC of a foam material.
the ellipsoid for both the HFGMC and FE solutions and for the full
RUC with quarter portion removed. Again, a very good agreement
exists.

The next studied problem analyzes a composite with a system
of reinforcements in the form of discontinuous aligned circular fi-
bers (short-fiber composite). Fig. 9 displays the refined mesh of the



(a)

(b)

Fig. 12. Stress distributions in the RUC of the foam material. (a) HFGMC results
(periodic displacements), (b) FE results (periodic displacements).

Fig. 13. Stress distributions in the RUC of the foam material showing HFGMC
results with full periodic conditions (displacements and tractions).
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RUC together with the short fiber itself and its cross-section. The
ratios of the dimensions of the RUC are D ¼ 5 and H ¼ L ¼ 1. The
axial length of the fiber is 4:53 and its diameter is equal to 0:4,
resulting in a fiber volume fraction of 11.4%. The RUC is subjected
to remote axial strain �0

11 ¼ 0:01. The values of the fiber and matrix
elastic properties are the same as those of the inclusion and matrix
properties in the previous problem. The size of the problem in this
case is Nc ¼ 17984. The resulting Mises stress distribution within
the RUC as predicted by the HFGMC and the FE are shown in
Fig. 10(a) and (b), respectively. It can be observed that the HFGMC
is capable in capturing the local mechanism of stress-transfer at
the discontinuous edge of the fiber to the matrix. Both solutions
are very close as shown.

The final example considers a periodic foam-like material with
a relatively complex geometry of the microstructure. Fig. 11 shows
the selected geometry of the RUC. It is evident that this is a rela-
tively complex geometry due to the spatial curvature and shape
of the cuts. Accurate modeling of the material in this case requires
a refined 3D mesh able to represent the local geometry. The choice
of the RUC geometry has been inspired from scaffolds used in tis-
sue engineering and orthopedic micro-implants. Its dimensions are
D ¼ H ¼ L ¼ 1 and was constructed by removing material enclosed
by three orthogonal cylinders, the diameter of each is 0:8. It is
worth observing the local geometry where the removed cylinders
intersect. The material elastic properties are E = 4.8 GPa, m = 0.34.
The total number of subcells is Nc ¼ 34560 and the remote axial
strain is �0

11 ¼ 0:01. Fig. 12(a) and (b) exhibit the Mises stress dis-
tribution in the 3D HFGMC compared with the FE solution, respec-
tively. Excellent agreement exists especially at the inner corners. It
is important to mention for this case, that an explicit average trac-
tion-free conditions are imposed by the HFGMC on the inner sur-
faces. Finally, the Mises stress variations are shown in Fig. 13 for
the same RUC but when full periodicity conditions are applied be-
tween the RUCs by the HFGMC model. It is clearly observed that
the form of the stress distribution is impacted by imposing the full
micromechanical boundary conditions. This demonstrates the
micromechanical capability embedded in the formulation of the
HFGMC. By introducing inelastic effects, it would be possible to ex-
tend the 3D parametric HFGMC to analyze metallic foams.
5. Conclusions

A new 3D parametric micromechanical formulation of the
HFGMC method is presented using linear geometric mapping with
hexahedral subcells. A complete quadratic expansion of the dis-
placement is used for the subcells where its unknown coefficients
are in the form of average displacements of the six sides of the sub-
cells in addition to an internal coefficient that can be statically con-
densed using the integral-based equilibrium equations. The
independent average displacement micro-variable vector for each
side of the subcell forms an energy-conjugate pair with the trans-
formed average-traction vector. Trivial and non-trivial relations for
the coefficients of the bilinear terms are found and their corre-
sponding strain–displacement matrices are derived without the
need for additional equations in the form of moments of the equi-
librium. Thus, the open question previously posed by the authors
on the optimal equations for the bilinear coefficients is resolved
in the current study. The previous 2D parametric and orthogonal
HFGMC formulations are special cases of the present 3D formula-
tion. Solution approaches to the parametric HFGMC equations are
also discussed and numerical integration is needed due to non con-
stant Jacobian of the linear mapping. Wide range of applications
are presented to verify the 3D parametric HFGMC as compared
with finite-element RUC models. The proposed 3D parametric
HFGMC is general and well suited for nonlinear material and fi-
nite-deformations previously developed in the framework of the
orthogonal HFGMC. Previously developed cohesive damage model-
ing can be integrated within the new formulation. These modeling
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features can be integrated within the proposed 3D parametric
micromechanics along with local–global multi-scale analysis of
composite structures.
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Appendix A

In this Appendix, the non-zero components of the strain micro-
displacements matrices are listed first for the quadratic polynomial
with zero bilinear terms (trivial case) and second for the con-
strained symmetric bilinear term coefficients (non-trivial case).
The terms for first matrix are

A1;1 ¼ �1=2 Ĵ1;3 þ 3=2 Ĵ1;3t A1;4 ¼ 1=2 Ĵ1;3 þ 3=2 Ĵ1;3t

A1;7 ¼ �1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A1;10 ¼ 1=2 Ĵ1;1 þ 3=2 Ĵ1;1r

A1;13 ¼ 1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A1;16 ¼ �1=2 Ĵ1;1 þ 3=2 Ĵ1;1r

A1;19 ¼ �3 Ĵ1;1r � 3 Ĵ1;2s� 3 Ĵ1;3t A2;2 ¼ �1=2 Ĵ2;3 þ 3=2 Ĵ2;3t

A2;5 ¼ 1=2 Ĵ2;3 þ 3=2 Ĵ2;3t A2;8 ¼ �1=2 Ĵ2;2 þ 3=2 Ĵ2;2s

A2;11 ¼ 1=2 Ĵ2;1 þ 3=2 Ĵ2;1r A2;14 ¼ 1=2 Ĵ2;2 þ 3=2 Ĵ2;2s

A2;17 ¼ �1=2 Ĵ2;1 þ 3=2 Ĵ2;1r A2;20 ¼ �3 Ĵ2;1r � 3 Ĵ2;2s� 3 Ĵ2;3t

A3;3 ¼ �1=2 Ĵ3;3 þ 3=2 Ĵ3;3t A3;6 ¼ 1=2 Ĵ3;3 þ 3=2 Ĵ3;3t

A3;9 ¼ �1=2 Ĵ3;2 þ 3=2 Ĵ3;2s A3;12 ¼ 1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A3;15 ¼ 1=2 Ĵ3;2 þ 3=2 Ĵ3;2s A3;18 ¼ �1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A3;21 ¼ �3 Ĵ3;1r � 3 Ĵ3;2s� 3 Ĵ3;3t A4;2 ¼ �1=2 Ĵ3;3 þ 3=2 Ĵ3;3t

A4;3 ¼ �1=2 Ĵ2;3 þ 3=2 Ĵ2;3t A4;5 ¼ 1=2 Ĵ3;3 þ 3=2 Ĵ3;3t

A4;6 ¼ 1=2 Ĵ2;3 þ 3=2 Ĵ2;3t A4;8 ¼ �1=2 Ĵ3;2 þ 3=2 Ĵ3;2s

A4;9 ¼ �1=2 Ĵ2;2 þ 3=2 Ĵ2;2s A4;11 ¼ 1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A4;12 ¼ 1=2 Ĵ2;1 þ 3=2 Ĵ2;1r A4;14 ¼ 1=2 Ĵ3;2 þ 3=2 Ĵ3;2s

A4;15 ¼ 1=2 Ĵ2;2 þ 3=2 Ĵ2;2s A4;17 ¼ �1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A4;18 ¼ �1=2 Ĵ2;1 þ 3=2 Ĵ2;1r A4;20 ¼ �3 Ĵ3;1r � 3 Ĵ3;2s� 3 Ĵ3;3t

A4;21 ¼ �3 Ĵ2;1r � 3 Ĵ2;2s� 3 Ĵ2;3t A5;1 ¼ �1=2 Ĵ3;3 þ 3=2 Ĵ3;3t

A5;3 ¼ �1=2 Ĵ1;3 þ 3=2 Ĵ1;3t A5;4 ¼ 1=2 Ĵ3;3 þ 3=2 Ĵ3;3t

A5;6 ¼ 1=2 Ĵ1;3 þ 3=2 Ĵ1;3t A5;7 ¼ �1=2 Ĵ3;2 þ 3=2 Ĵ3;2s

A5;9 ¼ �1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A5;10 ¼ 1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A5;12 ¼ 1=2 Ĵ1;1 þ 3=2 Ĵ1;1r A5;13 ¼ 1=2 Ĵ3;2 þ 3=2 Ĵ3;2s
A5;15 ¼ 1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A5;16 ¼ �1=2 Ĵ3;1 þ 3=2 Ĵ3;1r

A5;18 ¼ �1=2 Ĵ1;1 þ 3=2 Ĵ1;1r A5;19 ¼ �3 Ĵ3;1r � 3 Ĵ3;2s� 3 Ĵ3;3t

A5;21 ¼ �3 Ĵ1;1r � 3 Ĵ1;2s� 3 Ĵ1;3t A6;1 ¼ �1=2 Ĵ2;3 þ 3=2 Ĵ2;3t

A6;2 ¼ �1=2 Ĵ1;3 þ 3=2 Ĵ1;3t A6;4 ¼ 1=2 Ĵ2;3 þ 3=2 Ĵ2;3t

A6;5 ¼ 1=2 Ĵ1;3 þ 3=2 Ĵ1;3t A6;7 ¼ �1=2 Ĵ2;2 þ 3=2 Ĵ2;2s

A6;8 ¼ �1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A6;10 ¼ 1=2 Ĵ2;1 þ 3=2 Ĵ2;1r

A6;11 ¼ 1=2 Ĵ1;1 þ 3=2 Ĵ1;1r A6;13 ¼ 1=2 Ĵ2;2 þ 3=2 Ĵ2;2s

A6;14 ¼ 1=2 Ĵ1;2 þ 3=2 Ĵ1;2s A6;16 ¼ �1=2 Ĵ2;1 þ 3=2 Ĵ2;1r

A6;17 ¼ �1=2 Ĵ1;1 þ 3=2 Ĵ1;1r A6;19 ¼ �3 Ĵ2;1r � 3 Ĵ2;2s� 3 Ĵ2;3t

A6;20 ¼ �3 Ĵ1;1r � 3 Ĵ1;2s� 3 Ĵ1;3t

The non-zero terms for the second matrix are

A1;1 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t � 1=2 Ĵ1;3

A1;4 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t þ 1=2 Ĵ1;3

A1;7 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
s� 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A1;10 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r þ 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A1;13 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
sþ 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A1;16 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r � 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A1;19 ¼ �Ĵ1;3 � Ĵ1;2 � 3 Ĵ1;1

� �
r þ �Ĵ1;3 � 3 Ĵ1;2 � Ĵ1;1

� �
s

þ �3 Ĵ1;3 � Ĵ1;2 � Ĵ1;1

� �
t

A2;2 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t � 1=2 Ĵ2;3

A2;5 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t þ 1=2 Ĵ2;3

A2;8 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
s� 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A2;11 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r þ 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t

A2;14 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
sþ 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A2;17 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r � 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t
A2;20 ¼ �Ĵ2;3 � Ĵ2;2 � 3 Ĵ2;1

� �
r þ �Ĵ2;3 � 3 Ĵ2;2 � Ĵ2;1

� �
sþ �3 Ĵ2;3 � Ĵ2;2 � Ĵ2;1

� �
t
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A3;3 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t � 1=2 Ĵ3;3

A3;6 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t þ 1=2 Ĵ3;3

A3;9 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
s� 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A3;12 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r þ 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A3;15 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
sþ 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A3;18 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r � 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A3;21 ¼ �Ĵ3;3 � Ĵ3;2 � 3 Ĵ3;1

� �
r þ �Ĵ3;3 � 3 Ĵ3;2 � Ĵ3;1

� �
sþ �3 Ĵ3;3 � Ĵ3;2 � Ĵ3;1

� �
t

A4;2 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t � 1=2 Ĵ3;3

A4;3 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t � 1=2 Ĵ2;3

A4;5 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t þ 1=2 Ĵ3;3

A4;6 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t þ 1=2 Ĵ2;3

A4;8 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
s� 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A4;9 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
s� 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A4;11 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r þ 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A4;12 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r þ 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t

A4;14 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
sþ 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A4;15 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
sþ 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A4;17 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r � 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A4;18 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r � 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t

A4;20 ¼ �Ĵ3;3 � Ĵ3;2 � 3 Ĵ3;1

� �
r þ �Ĵ3;3 � 3 Ĵ3;2 � Ĵ3;1

� �
sþ �3 Ĵ3;3 � Ĵ3;2 � Ĵ3;1

� �
t

A4;21 ¼ �Ĵ2;3 � Ĵ2;2 � 3 Ĵ2;1

� �
r þ �Ĵ2;3 � 3 Ĵ2;2 � Ĵ2;1

� �
sþ �3 Ĵ2;3 � Ĵ2;2 � Ĵ2;1

� �
t

A5;1 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t � 1=2 Ĵ3;3

A5;3 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t � 1=2 Ĵ1;3

A5;4 ¼ 1=4 Ĵ3;3r þ 1=4 Ĵ3;3sþ 1=4 Ĵ3;1 þ 1=4 Ĵ3;2 þ 3=2 Ĵ3;3

� �
t þ 1=2 Ĵ3;3

A5;6 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t þ 1=2 Ĵ1;3

A5;7 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
s� 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A5;9 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
s� 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A5;10 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r þ 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A5;12 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r þ 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A5;13 ¼ 1=4 Ĵ3;2r þ 1=4 Ĵ3;1 þ 3=2 Ĵ3;2 þ 1=4 Ĵ3;3

� �
sþ 1=2 Ĵ3;2 þ 1=4 Ĵ3;2t

A5;15 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
sþ 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A5;16 ¼ 3=2 Ĵ3;1 þ 1=4 Ĵ3;2 þ 1=4 Ĵ3;3

� �
r � 1=2 Ĵ3;1 þ 1=4 Ĵ3;1sþ 1=4 Ĵ3;1t

A5;18 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r � 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A5;19 ¼ �Ĵ3;3 � Ĵ3;2 � 3 Ĵ3;1

� �
r þ �Ĵ3;3 � 3 Ĵ3;2 � Ĵ3;1

� �
sþ �3 Ĵ3;3 � Ĵ3;2 � Ĵ3;1

� �
t

A5;21 ¼ �Ĵ1;3 � Ĵ1;2 � 3 Ĵ1;1

� �
r þ �Ĵ1;3 � 3 Ĵ1;2 � Ĵ1;1

� �
sþ �3 Ĵ1;3 � Ĵ1;2 � Ĵ1;1

� �
t

A6;1 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t � 1=2 Ĵ2;3

A6;2 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t � 1=2 Ĵ1;3

A6;4 ¼ 1=4 Ĵ2;3r þ 1=4 Ĵ2;3sþ 1=4 Ĵ2;1 þ 1=4 Ĵ2;2 þ 3=2 Ĵ2;3

� �
t þ 1=2 Ĵ2;3

A6;5 ¼ 1=4 Ĵ1;3r þ 1=4 Ĵ1;3sþ 1=4 Ĵ1;1 þ 1=4 Ĵ1;2 þ 3=2 Ĵ1;3

� �
t þ 1=2 Ĵ1;3

A6;7 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
s� 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A6;8 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
s� 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A6;10 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r þ 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t
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A6;11 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r þ 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A6;13 ¼ 1=4 Ĵ2;2r þ 1=4 Ĵ2;1 þ 3=2 Ĵ2;2 þ 1=4 Ĵ2;3

� �
sþ 1=2 Ĵ2;2 þ 1=4 Ĵ2;2t

A6;14 ¼ 1=4 Ĵ1;2r þ 1=4 Ĵ1;1 þ 3=2 Ĵ1;2 þ 1=4 Ĵ1;3

� �
sþ 1=2 Ĵ1;2 þ 1=4 Ĵ1;2t

A6;16 ¼ 3=2 Ĵ2;1 þ 1=4 Ĵ2;2 þ 1=4 Ĵ2;3

� �
r � 1=2 Ĵ2;1 þ 1=4 Ĵ2;1sþ 1=4 Ĵ2;1t

A6;17 ¼ 3=2 Ĵ1;1 þ 1=4 Ĵ1;2 þ 1=4 Ĵ1;3

� �
r � 1=2 Ĵ1;1 þ 1=4 Ĵ1;1sþ 1=4 Ĵ1;1t

A6;19 ¼ �Ĵ2;3 � Ĵ2;2 � 3 Ĵ2;1

� �
r þ �Ĵ2;3 � 3 Ĵ2;2 � Ĵ2;1

� �
sþ �3 Ĵ2;3 � Ĵ2;2 � Ĵ2;1

� �
t

A6;20 ¼ �Ĵ1;3 � Ĵ1;2 � 3 Ĵ1;1

� �
r þ �Ĵ1;3 � 3 Ĵ1;2 � Ĵ1;1

� �
sþ �3 Ĵ1;3 � Ĵ1;2 � Ĵ1;1

� �
t
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