413 research outputs found

    The striatal dopamine transporter in first-episode, drug-naive schizophrenic patients: evaluation by the new SPECT-ligand[99mTc]TRODAT-1

    Get PDF
    Following the current hypothesis that acute schizophrenic psychotic illness is associated with a triatal ‘hyperdopaminergic state’, presynaptic integrity and dopamine transporter (DAT) density in first-episode, neuroleptic-naive schizophrenic patients was measured by single-photonemission- tomography (SPECT) and compared with that in healthy control subjects. A new SPECT-ligand for assessment of the striatal DAT, the Technetium-99m-labelled tropane TRODAT-1 ([99mTc]TRODAT-1), was used. Ten inpatients suffering from a first acute schizophrenic episode and 10 age- and sex-matched healthy control subjects underwent SPECT with [99mTc]TRODAT-1. On the day of SPECT, psychopathological ratings were performed with the Brief Psychiatric Rating Scale (BPRS), the Positive and Negative Syndrome Scale (PANSS) and Schedule for Assessment of Negative Symptoms (SANS). Patients had not previously received any neuroleptic or antidepressant medication. Mean specific TRODAT-1 binding in the striatum did not differ significantly between the patient and the age- and sex-matched control group (1.25 vs. 1.28). Variance was significantly higher in the patient group. The data obtained with the new ligand in first-episode, drug-naive schizophrenic patients are in line with the PET results from the group of Laakso et al. in a comparable patient sample. [99mTc]TRODAT-1 seems to be a valuable new SPECTligand in the evaluation of the presynaptic site of the striatal dopaminergic synapse in schizophrenia

    Locally increased P-glycoprotein function in major depression: a PET study with [C-11]verapamil as a probe for P-glycoprotein function in the blood-brain barrier

    Get PDF
    The aetiology of depressive disorder remains unknown, although genetic susceptibility and exposure to neurotoxins are currently being discussed as possible contributors to this disorder. In normal circumstances, the brain is protected against bloodborne toxic influences by the blood-brain barrier, which includes the molecular efflux pump P-glycoprotein (P-gp) in the vessel wall of brain capillaries. We hypothesized that P-gp function in the blood-brain barrier is changed in patients with major depression. Positron emission tomography Was used to measure brain uptake of [C-11]verapamil, which is normally expelled from the brain by P-gp. Cerebral Volume of distribution (V-T) of [C-11]verapamil was used as a measure of P-gp function. Both region-of-interest (ROI) analysis and voxel analysis using statistical parametric mapping (SPM2) were performed to assess regional brain P-gp function. We found that patients with a major depressive episode, using antidepressants, compared to health), controls showed a significant decrease of [C-11]verapamil uptake in different areas throughout the brain, in particular in frontal and temporal regions. The decreased [C-11]verapamil uptake correlates with an increased function of the P-gp protein and may be related to chronic use of psychotropic drugs, Our results may explain why treatment-resistant depression can develop

    Locomotor hyperactivity in 14-3-3Zeta KO mice is associated with dopamine transporter dysfunction

    Get PDF
    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.H Ramshaw, X Xu, EJ Jaehne, P McCarthy, Z Greenberg, E Saleh, B McClure, J Woodcock, S Kabbara, S Wiszniak, Ting-Yi Wang, C Parish, M van den Buuse, BT Baune, A Lopez and Q Schwar

    Variation in dopamine D2 and serotonin 5-HT2A receptor genes is associated with working memory processing and response to treatment with antipsychotics

    Get PDF
    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with secondgeneration antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n¼63 and n¼54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships

    Association between 5-HT2A, TPH1 and GNB3 genotypes and response to typical neuroleptics: a serotonergic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is a common psychiatric disease affecting about 1% of population. One major problem in the treatment is finding the right the drug for the right patients. However, pharmacogenetic results in psychiatry can seldom be replicated.</p> <p>Methods</p> <p>We selected three candidate genes associated with serotonergic neurotransmission for the study: serotonin 2A (<it>5-HT2A</it>) receptor gene, tryptophan hydroxylase 1 (<it>TPH1</it>) gene, and G-protein beta-3 subunit (<it>GNB3</it>) gene. We recruited 94 schizophrenia patients representing extremes in treatment response to typical neuroleptics: 43 were good responders and 51 were poor responders. The control group consisted of 392 healthy blood donors.</p> <p>Results</p> <p>We do, in part, replicate the association between <it>5-HT2A </it>T102C polymorphism and response to typical neuroleptics. In female patients, C/C genotype was significantly more common in non-responders than in responders [OR = 6.04 (95% Cl 1.67–21.93), p = 0.005] or in the control population [OR = 4.16 (95% CI 1.46–11.84), p = 0.005]. <it>TPH1 </it>A779C C/A genotype was inversely associated with good treatment response when compared with non-responders [OR = 0.59 (95% Cl 0.36–0.98), p = 0.030] or with the controls [OR = 0.44 (95% CI 0.23–0.86, p = 0.016], and <it>GNB3 </it>C825T C/T genotype showed a trend-like positive association among the male patients with a good response compared with non-responders [OR = 3.48 (95% Cl 0.92–13.25), p = 0.061], and a clearer association when compared with the controls [OR = 4.95 (95% CI 1.56–15.70), p = 0.004].</p> <p>Conclusion</p> <p>More findings on the consequences of functional polymorphisms for the role of serotonin in the development of brain and serotonergic neurotransmission are needed before more detailed hypotheses regarding susceptibility and outcome in schizophrenia can be formulated. The present results may highlight some of the biological mechanisms in different courses of schizophrenia between men and women.</p

    Effects of Dopamine on Sensitivity to Social Bias in Parkinson's Disease

    Get PDF
    Patients with Parkinson's disease (PD) sometimes develop impulsive compulsive behaviours (ICBs) due to their dopaminergic medication. We compared 26 impulsive and 27 non-impulsive patients with PD, both on and off medication, on a task that examined emotion bias in decision making. No group differences were detected, but patients on medication were less biased by emotions than patients off medication and the strongest effects were seen in patients with ICBs. PD patients with ICBs on medication also showed more learning from negative feedback and less from positive feedback, whereas off medication they showed the opposite effect

    Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure

    Get PDF
    The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 µg/side) or D1 antagonist SCH23390 (0.5 µg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning

    Replication of functional serotonin receptor type 3A and B variants in bipolar affective disorder: a European multicenter study

    Get PDF
    Serotonin type 3 receptors (5-HT3) are involved in learning, cognition and emotion, and have been implicated in various psychiatric phenotypes. However, their contribution to the pathomechanism of these disorders remains elusive. Three single nucleotide polymorphisms (SNPs) in the HTR3A and HTR3B genes (rs1062613, rs1176744 and rs3831455) have been associated with bipolar affective disorder (BPAD) in pilot studies, and all of them are of functional relevance. We performed a European multicenter study to confirm previous results and provide further evidence for the relevance of these SNPs to the etiology of neuropsychiatric disorders. This involved analysis of the distribution of the three SNPs among 1804 BPAD cases and 2407 healthy controls. A meta-analysis revealed a pooled odds ratio of 0.881 (P=0.009, 95% confidence intervals=0.802–0.968) for the non-synonymous functional SNP HTR3B p.Y129S (rs1176744), thereby confirming previous findings. In line with this, the three genome-wide association study samples BOMA (Bonn-Mannheim)-BPAD, WTCCC (Wellcome Trust Case Control Consortium)-BPAD and GAIN (Genetic Association Information Network)-BPAD, including >3500 patients and 5200 controls in total, showed an overrepresentation of the p.Y129 in patients. Remarkably, the meta-analysis revealed a P-value of 0.048 (OR=0.934, fixed effect model). We also performed expression analyses to gain further insights into the distribution of HTR3A and HTR3B mRNA in the human brain. HTR3A and HTR3B were detected in all investigated brain tissues with the exception of the cerebellum, and large differences in the A:B subunit ratio were observed. Interestingly, expression of the B subunit was most prominent in the brain stem, amygdalae and frontal cortex, regions of relevance to psychiatric disorders. In conclusion, the present study provides further evidence for the presence of impaired 5-HT3 receptor function in BPAD

    Model-based parametric study of frontostriatal abnormalities in schizophrenia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have suggested that the activity of the prefrontal cortex (PFC) and the dopamine (DA) release in the striatum has an inverse relationship. One would attribute this relationship primarily to the circuitry comprised of the glutamatergic projection from the PFC to the striatum and the GABAergic projection from the striatum to the midbrain DA nucleus. However, this circuitry has not characterized satisfactorily yet, so that no quantitative analysis has ever been made on the activities of the PFC and the striatum and also the DA release in the striatum.</p> <p>Methods</p> <p>In this study, a system dynamics model of the corticostriatal system with dopaminergic innervations is constructed to describe the relationships between the activities of the PFC and the striatum and the DA release in the striatum. By taking published receptor imaging data from schizophrenia patients and healthy subjects into this model, this article analyzes the effects of striatal D2 receptor activation on the balance of the activity and neurotransmission in the frontostriatal system of schizophrenic patients in comparison with healthy controls.</p> <p>Results</p> <p>The model predicts that the suppressive effect by D2 receptors at the terminals of the glutamatergic afferents to the striatum from the PFC enhances the hypofrontality-induced elevation of striatal DA release by at most 83%. The occupancy-based estimation of the 'optimum' D2 receptor occupancy by antipsychotic drugs is 52%. This study further predicts that patients with lower PFC activity tend to have greater improvement of positive symptoms following antipsychotic medication.</p> <p>Conclusion</p> <p>This model-based parametric study would be useful for system-level analysis of the brains with psychiatric diseases. It will be able to make reliable prediction of clinical outcome when sufficient data will be available.</p
    corecore