138 research outputs found

    Kinematics and dynamics of the "superthin" edge-on disk galaxy IC 5249

    Full text link
    We present spectroscopic observations of the stellar motions in the disk of the superthin edge-on spiral galaxy IC 5249 and re-analyse synthesis observations of the HI. We find that the HI rotation curve rises initially to about 90-100 km/s, but contrary to the conclusion of Abe et al. (1999) flattens well before the edge of the optical disk. Over most part of the optical disk we have been able to establish that the (tangential) stellar velocity dispersion is 25-30 km/s. From earlier surface photometry we adopt a value for the radial scalelength of the disk of 7 +/- 1 kpc, a vertical scaleheight of 0.65 +/- 0.05 kpc and a disk truncation radius of 17 +/- 1 kpc. The very thin appearance of IC 5249 on the sky is the result of a combination of a low (face-on) surface brightness, a long scalelength and a a sharp truncation at only about 2.5 scalelengths. From various arguments we derive the stellar velocity dispersions at a position one radial scalelength as sigma_R about 35 km/s, sigma_{theta} about 30 km/s and sigma_z about 20 km/s. This is comparable to the values for the disk of our Galaxy in the solar neighborhood.Comment: 11 pages and 8 figures. Accepted for Astronomy and Astrophysics (September 2001

    New anomalous trajectory in Regge theory

    Get PDF
    We show that a new Regge trajectory with \alpha_{f_1} (0) \approx 1 and slope \alpha_{f_1}'(0) \approx 0 explains the features of hadron-hadron scattering and photoproduction of the rho and phi mesons at large energy and momentum transfer. This trajectory with quantum numbers P = C = +1 and odd signature can be considered as a natural partner of the Pomeron which has even signature. The odd signature of the new exchange leads to contributions to the spin-dependent cross sections, which do not vanish at large energy. The links between the anomalous properties of this trajectory, the axial anomaly and the flavor singlet axial vector f_1 (1285) meson are discussed.Comment: 20 pages, REVTeX, 8 figures (9 eps files), version to appear in Phys. Rev.

    Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution

    Get PDF
    In minimal supersymmetric models the ZZ-penguin usually provides sub-dominant contributions to charged lepton flavour violating observables. In this study, we consider the supersymmetric inverse seesaw in which the non-minimal particle content allows for dominant contributions of the ZZ-penguin to several lepton flavour violating observables. In particular, and due to the low-scale (TeV) seesaw, the penguin contribution to, for instance, \Br(\mu \to 3e) and μe\mu-e conversion in nuclei, allows to render some of these observables within future sensitivity reach. Moreover, we show that in this framework, the ZZ-penguin exhibits the same non-decoupling behaviour which had previously been identified in flavour violating Higgs decays in the Minimal Supersymmetric Standard Model.Comment: 29 pages, 9 figures, 4 tables; v2: minor corrections, version to appear in JHE

    An extension result for maps admitting and algebraic addition theorem

    Get PDF
    We prove that if an analytic map : U [flecha] Cn, where U [incluye] C [elevado a ] n is an open neighborhood of the origin, admits an algebraic addition theorem then, there exists a meromorphic map g : C [elevado a]n [flecha] C [elevado a]n admitting an algebraic addition theorem such that each coordinate function of f is algebraic over C(g) on U (this was proved by K. Weierstrass for n = 1). Furthermore, g admits a rational addition theorem

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure

    Supernova Model Discrimination with Hyper-Kamiokande

    Full text link
    [EN] Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande's response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations toward a precise reproduction of the explosion mechanism observed in nature.We thank MacKenzie Warren, Ken'ichiro Nakazato, Tomonori Totani, Adam Burrows, David Vartanyan, and Irene Tamborra for access to the supernova models used in this work and for answering various related questions. This work was supported by MEXT Grant-in-Aid for Scientific Research on Innovative Areas titled "Exploration of Particle Physics and Cosmology with Neutrinos" under grant No. 18H05535, 18H05536, and 18H5537. In addition, participation of individual researchers has been further supported by funds from JSPS, Japan; the European Union's Horizon 2020 Research and Innovation Programme H2020 grant Nos. RISE-GA822070-JENNIFER2 2020 and RISEGA872549-SK2HK; SSTF-BA1402-06, NRF grant Nos. 20090083526, NRF-2015R1A2A1A05001869, NRF-2016R1D1A 1A02936965, NRF-2016R1D1A3B02010606, NRF-2017R1 A2B4012757, and NRF-2018R1A6A1A06024970 funded by the Korean government (MSIP); JSPS-RFBR Grant #20-5250010/20 and the Ministry of Science and Higher Education under contract #075-15-2020-778, Russia; Brazilian Funding agencies, CNPq and CAPES; STFC ST/R00031X/2, ST/T002891/1, ST/V002872/1, Consolidated Grants, UKRI MR/S032843/1 and MR/S034102/1, UK. Software: BONSAI.(Smy 2007), sntools. (Migenda et al. 2021), WCSim, 124. matplotlib.(Hunter 2007), NumPy.(van der Walt et al. 2011), SciPy.(Virtanen et al. 2020)Abe, K.; Adrich, P.; Aihara, H.; Akutsu, R.; Alekseev, I.; Ali, A.; Ameli, F.... (2021). Supernova Model Discrimination with Hyper-Kamiokande. The Astrophysical Journal. 916(1):1-17. https://doi.org/10.3847/1538-4357/abf7c4117916

    LOVTRAP: an optogenetic system for photoinduced protein dissociation

    Get PDF
    Here we introduce LOVTRAP, an optogenetic approach for reversible, light-induced protein dissociation. LOVTRAP is based on protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in Kd. By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins’ access to the cell edge, demonstrating a naturally occurring 3 mHz cell edge oscillation driven by interactions of Vav2, Rac1 and PI3K

    Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression

    Get PDF
    Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types

    The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Get PDF
    Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.The authors are grateful for the constant support provided by the Hospital Universitari de Sant Joan and the Universitat Rovira i Virgili. Salvador Fernández-Arroyo is the recipient of a Sara Borrell grant (CD12/00672) from the Instituto de Salud Carlos III, Madrid, Spain. The authors also thank the Andalusian Regional Government Council of Innovation and Science for the Excellence Project P11-CTS-7625 and Generalitat Valenciana for the project PROMETEO/2012/007. This work was also supported by projects of the Fundación Areces and the Fundación MAGAR
    corecore