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Abstract

Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors

(FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded

cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by

dietary polyphenols.

Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using

a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This

mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3

that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth.

Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3

(G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM)

generation, and grade of activation of mitogen-activated protein kinases.

Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal

growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated

the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition

of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these

beneficial effects.

Conclusions: These findings support the rationale behind the encouragement of the development of drugs that

repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the

management of degraded cartilage.
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T
he available evidence no longer sustains the

concept that the biological activity of therapeutic

compounds is limited to unique and well-defined

mechanisms. Contrarily, the simultaneous and combined

use of active constituents, which is in line with the notion

that nutrients are associated with the preservation of

health status, supports the challenging search for novel

therapeutic targets among bioactive food components (1).

In this setting, polyphenols associate their intrinsic anti-

oxidant and anti-inflammatory properties with a syner-

gistic impact in metabolic functions and maintenance

of cellular homeostasis (2). The intimate mechanism(s) is

not completely understood but is probably associated

with gene expression pathways that coordinate important
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intracellular signaling pathways (3, 4). One of the most

important ways to maintain correct cell growth and dif-

ferentiation is via the signal transduction cascade, acti-

vated by the binding of growth factors to their receptors.

In particular, fibroblast growth factors (FGFs) are crucial

in the regulation of tissue formation (5), and the potential

effects of altered interactions between FGFs and their

receptors (FGFRs) are attractive targets to be explored in

the relationship between food intake and disease (6).

In humans, the binding of growth factors to specific

receptors results in a pleiotropic response derived from the

distinct tissue distribution and the complexity of these

families of proteins. However, their immediate action comes

from the activation and/or dysfunction of phosphoryla-

tion events in important signaling pathways. Dietary poly-

phenols are probable candidates to modulate and regulate

disturbances in these pathways through relevant key mole-

cules, including phospholipase C gamma (PLCg) (7), the

signal transducer and activator of transcription (STAT)

protein (8), phosphoinositol-3 kinase/protein kinase B

(PI-3K/AKT) (9), and rat sarcoma protein/mitogen acti-

vated protein kinase (RAS/MAPK [ERK-1/-2]) (10). It

is therefore expected that human nutrition and growth

factors are associated with inflammatory and metabolic

disturbances (11�14). Moreover, point mutations in FGFRs

affecting the function of FGFs-activated receptors have

been shown to be consistently involved in cancer (15�17),

atherosclerosis (18), and dysfunctions in growth and

development (19, 20).

For the purpose of this study, we highlight the fact

that unambiguous functional mutations in FGFR3 are

involved in several diseases (21, 22), including skeletal

dysplasia and osteoarthritis (23, 24). Because dietary poly-

phenols block the actions of some cytokines and FGFs

that lead to cartilage degradation (25), we have tested the

hypothesis that dietary polyphenols might have an im-

portant regulatory effect on the functional binding of

FGFs to their receptors. We used murine chondrocytes

to transduce a human mutated FGFR3 by substituting

glycine with arginine at position 380 (G380R), which

causes achondroplasia. When the receptor is activated by

its specific ligand (FGF9), this mutation produces severe

changes in cellular growth. We have previously shown

(26�28) that this model is sensitive for gaining insight into

the management of diseases associated with dysfunctions

in cartilage. To reduce the complexities found in the com-

position of plant foods, but preserving the multiple and

synergistic effects provided by the combination of multiple

compounds, we have employed several fully characterized,

polyphenol-rich plant extracts. The hypothesis is relevant

because repression of mutated FGFR3 might illustrate

the potential reversibility of a genetic condition and the

feasibility of alternative therapeutic strategies (29, 30).

Our findings support the view that the dietary incorpora-

tion of supplementary nutrients may be safely utilized to

regulate intracellular signaling networks in the manage-

ment of degraded cartilage phenotypes.

Material and methods

Chemical and reagents

Tetracycline, minimum essential medium alpha (a-MEM),

heat-inactivated fetal bovine serum, and antibiotics

(penicillin, Geneticin, streptomycin, and hygromycin) were

obtained from Invitrogen (Carlsbad, CA, USA). Tris base,

NaCl, NP-40, sodium deoxycholate, SDS, TWEEN-20,

BSA, phenylmethylsulfonyl fluoride (PMSF), sodium

fluoride (NaF), sodium orthovanadate (Na3VO4), aproti-

nin, pepstatin, leupeptin, and human recombinant FGF9

were obtained from Sigma (St. Louis, MO, USA). Anti-

bodies against phospho-ERK-1/-2, ERK-1/-2, and GAPDH

as well as horseradish peroxidase-conjugated goat anti-

mouse IgG were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA, USA).

Plant extracts and phenolic composition

We assayed different combinations of polyphenols in

extracts prepared at a final concentration of 100 mg/mL

in water or dimethyl sulfoxide from Aspalathus linearis

(family Fabaceae; rooibos leaves), Vitis vinifera (family

Vitaceae; grape seeds), Citrus aurantium (family Rutaceae;

bitter orange), Lippia citriodora (family Verbenaceae; lemon

verbena leaves), Olea europaea (family Oleaceae; olive

leaves), and Hibiscus sabdariffa (family Malvaceae;

karkadé). The criteria for inclusion were as follows: pre-

vious use in our laboratory in cell or animal models,

commercialization (usually to prepare beverages), chemi-

cal characterization, and safety for human consumption.

All extracts are readily available (Monteloeder, Elche,

Spain) and information on the composition is provided

in Supplementary Tables 1 and 2. Chromatographic

methods, along with any additional extended data and

references unique to these sections, are available as sup-

plementary information in the online version. Of note,

we also tested extracts from Hypoxis rooperi (family

Hypoxidaceae; African potato) to ensure the lack of

effects from lignans (data not shown). Because of distinct

and significant effects obtained from H. sabdariffa, we

only present a full report of data obtained with this mixture

and a new preparation to concentrate its phenolic com-

pounds. This concentration was performed via a described

procedure that eliminates the residual presence of sugar,

fiber, and other material, significantly reducing the con-

centration of organic acids and decreasing the concentra-

tion of prodelphinidin B3 (31) (Supplementary Table 2).

This concentrated extract was employed in subsequent ex-

periments to provide a concentration of compounds similar

to that after the addition of normal extract (10 mg/mL in

the culture medium).
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Cell culture and assessment of cell size and morphology

RCJ3.1C5.18 cells obtained from a mesenchymal cell

line that differentiates into chondrocytes were used to

test whether polyphenols modulate the FGF system. Cells

were stably transfected with full-length human wild type

(RCJ-FGFR3-WT) cells or with the G380R mutant

FGFR3 (RCJ-FGFR3-G380R) cells included in a vector

that overexpresses the receptor in absence of tetracycline,

following procedures previously described (32, 33). Mutated

FGFR3 (G380R) results in the overexpression of FGFR3,

Fig. 1. Intracellular chloride accumulation is modulated by polyphenols. Measurements are indicated as percentages with
respect to values obtained in wild type cells and the effect of the addition of FGF9 (25 ng/mL; 100%) or the respective controls
without FGF9 (0%). Data are expressed as the mean9SD (n�6�9 independent experiments in triplicate), indicating the relative
increase or decrease in chloride concentration. (a) Among the different combinations of polyphenols, only those provided by
Hibiscus sabdariffa decreased intracellular chloride accumulation. In contrast, all other combinations favored the accumulation
of chloride. We decided to exclude these extracts in further analyses, and p values were provided only for H. Sabdariffa. (b) We
concentrated this extract to individualize the effect of polyphenols, assessing any potential contribution of residual compounds
and organic acids, and the values were compared with those obtained from the initial H. sabdariffa extract. Asterisks denote
significant effects with respect to controls.
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and in this model FGF9 provokes a reduction in cell

growth and aberrant morphological changes in chondro-

cytes. The required materials were obtained from ProChon

Biotech (Woburn, MA, USA). Cells were incubated at

378C with 5% CO2 in the standard a-MEM culture

medium supplemented with 15% heat-inactivated fetal

bovine serum and antibiotics (600 mg/mL Geneticin, 100

U/mL penicillin/streptomycin, and 50 mg/mL hygromycin)

with or without 2 mg/mL tetracycline. Results were pro-

vided by six independent experiments, in triplicate, and

trypan blue was employed to detect viable, unstained

cells. Cell size and morphology were monitored micro-

scopically, as previously described (28).

Chloride efflux measurements

To explore the effects of FGF9 in morphologic changes,

we first measured the FGFR3-regulated chloride flux

to assess the role of voltage gated chloride channels in

chondrogenesis (34). This method was employed as a

screening procedure to assess the potential benefits pro-

vided by polyphenols. In brief, measurements were made

using N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium

bromide (MQAE) as a fluorescent indicator (35). MQAE

has a high sensitivity to chloride, and changes in fluore-

scence inversely reflect changes in intracellular chloride

concentration. Thus, a decrease in intracellular fluores-

cence indicates the conservation of or an increase in the

intracellular chloride concentration. In the same way, an

increase in fluorescence indicates a decrease in the intra-

cellular chloride concentration. In both cases, a significant

movement of water is produced with a consequent

change in the voltage of the membrane (36). As previously

published (28), measurements were made employing the

appropriate controls, and the final concentration of FGF9

was set at 25 ng/mL according to dose�response experi-

ments. Cells were grown to confluence in 96-well plates

and loaded overnight with 0.8 mM MQAE at 378C. Then,

the medium was removed, washed, and incubated with

chloride-containing buffer (to induce chloride channel

activation) for 10 min at 378C. The buffer was then re-

moved and replaced by 100 mL of chloride-free buffer

containing the desired concentration of FGF9.

Assessment of ERK-1/-2 phosphorylation

Signals evoked by ligand-receptor interactions control

fundamental cellular processes in chondrocytes. The experi-

ments were focused to assess the previously unexplored

effects of H. sabdariffa on the ERK-1 and -2 components

of the MAPK cascade. ERK-1/-2 activation would re-

present an induction of chondrocyte maturation and, con-

versely, inhibition of ERK-1/-2 would suggest a blockade

of maturation and cell death (37). Cells were lysed in a

buffer with the following composition: 50 mM Tris�HCl

pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium deox-

ycholate, 0.1% SDS, 1 mM PMSF, 1 mM NaF, 2 mM

Na3VO4, 10 mg/mL aprotinin, 5 mg/mL pepstatin, and

10 mg/mL leupeptin. After centrifugation at 13,000 g for

20 min at 48C, protein concentration was determined by

the Bio-Rad protein assay (Bio-Rad laboratories, Hercules,

CA, USA). Proteins from each sample (45 mg) were

Fig. 2. Relative ERK-1/-2 phosphorylation. Experiments were performed in FGFR3 (G380R) mutant RCJ3.1C5.18
chondrocytes with or without FGF9 (25 ng/mL) and further incubated with Hibiscus sabdariffa or its polyphenolic extract.
Data were combined and expressed as the mean9SD (n�6, in triplicate). Representative results were included for illustrative
purposes.
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subjected to 10% SDS-polyacrylamide gels and were

transferred to nitrocellulose membranes (Amersham Phar-

macia Biotech, Buckinghamshire, UK). Membranes were

then blocked and incubated overnight with the primary

antibody in TBS containing 5% skim milk and 0.1%

TWEEN-20. After washing, blots were incubated with

horseradish peroxidase-conjugated goat anti-mouse IgG

secondary antibody (1:2,000). Development was performed

utilizing the ECL system (Amersham Pharmacia Biotech).

Films were scanned and analyzed using a Kodak GL 200

Imaging System with Kodak Molecular Imaging Software

(Rochester, NY, USA). Data are the result of six indepen-

dent experiments, in triplicate, and the overall procedure

was assessed using GAPDH as control.

Measurement of extracellular matrix secretion

The extracellular matrix (ECM) provides mechanical sup-

port and a spatial context for signaling events by various

cell surface growth factor receptors (38). We studied the

effects of H. sabdariffa extract and concentrated poly-

phenols in cartilage matrix deposition in chondrocytes

with a method based on Alcian blue staining (39). In

brief, reagents and protocols were obtained from Lifeline

Cell Technology (Frederick, MD, USA) and PromoCell

(Heidelberg, Germany). Cells were seeded at a density

of 2�105 cells/well in six-well dishes, and differentiation

was induced by adding 10 mM b-glycerophosphate and

50 mg/mL ascorbic acid to the medium. Cultures were fed

with supplemented media every 2 days; FGF9 (25 ng/mL)

was added to fresh growth medium, alone or in combina-

tion with bioactive compounds. Under these conditions, the

amount of cartilage matrix (proteoglycan synthesis) was

measured at 3, 7, and 10 days of culture (39). At these time

points, cells were washed with PBS and stained with Alcian

blue stain (1% in 3% acetic acid) for 30 min, washed again

three times for 2 min in 3% acetic acid, and rinsed with

distilled water. Solubility was achieved with 1% SDS, 1 h

at 908C, to measure the absorbance at 605 nm.

Statistical analysis

All data are presented as the mean9SD. To test general

differences among means, we employed ANOVA, followed

Fig. 3. Extracellular matrix (ECM) deposition. Data were combined and expressed as the mean9SD (n�6, in triplicate), and
the values indicate the amount of enrichment in the ECM utilizing Alcian blue staining of cells. Measurements were sequentially
performed at days 3, 7, and 10 and included untreated cells (control) and activated cells in the presence of Hibiscus sabdariffa
extract or its derived polyphenolic extract with or without FGF9 (25 ng/mL).
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by the Tukey-Kramer post-hoc test. To test specific dif-

ferences between means, homogenous variances were

assumed by the F-test, and Student’s t-test (two-sided)

was employed. PB0.05 was considered to be statistically

significant. Graphics were prepared with GraphPad Prism

6 (La Jolla, CA, USA) in combination with the statistical

software SPSS version 19 (Chicago, IL, USA).

Results and discussion

The expression in chondrocytes of the FGFR3 (G380R)

mutation is currently considered to be the likely cause

of the human chondrodysplasia, termed achondroplasia

(40, 41). In these patients, there is an over-activation of

FGFR3 in the presence of FGF9, which results in toxic

effects in chondrocytes, preventing endochondral bone for-

mation. Because this represents a gain-of-function mutation

and FGFR3 is a transmembrane receptor tyrosine kinase

that initiates signal transduction to the nucleus, it is re-

asonable to predict that successful therapeutic strategies

would decrease or eliminate FGFR3 signals. Using mouse

chondrocytes containing the human mutant FGFR3,

it has been possible to test the effects of polyphenols

and how these and other plant dietary compounds affect

intracellular signaling networks in an achondroplastic

model (2). To follow this approach, we measured the effect

of commercially available extracts commonly used in edible

preparations on the modulation of chloride efflux by

FGFR3 (G380R) and FGF9. The arrangement of FGF9

and FGFR3 in this model induced an enlarged achon-

droplastic chondrocyte size and an increase in the intra-

cellular chloride, which is likely the result of an inhibition

of the chloride efflux (42). Intriguingly, most polyphenol

combinations further increased the intracellular chloride

concentration and potentiated the deleterious effects in

chondrocytes (Fig. 1a). Quantitative effects, however,

differed considerably, andwe noted significant changes in cell

size and a disproportionate 15-fold increase in intra-

cellular chloride concentration caused by C. aurantium. In

response to the reproducibility of these data, we excluded

these dietary extracts in this study, but this information

will drive studies to further investigate the role of rest-

ing membrane potential in the normal development of

chondrocytes. Conversely, compounds from H. sabdariffa

restrained the increase in the intracellular chloride con-

centration (Fig. 1b). Interpretation is difficult because

data could indicate combined actions on FGFR3 sig-

naling, binding of FGF9, or direct preservation of the

membrane potential. Furthermore, analysis of the com-

position of the complex mixture of compounds in the

initial extract revealed that a significant amount of organic

acids and other materials were present together with

polyphenols. We then eliminated these residual compo-

nents to obtain an extract in which polyphenols were

concentrated. Subsequent experiments, once corrected

for the total amount of compounds, indicated that the

effect of polyphenols in the regulation of chloride efflux,

although significant, was less intense than that observed

in the initial extract (Fig. 1b and Supplementary Tables 1

and 2). Contrary to what we expected, the results suggest a

major role for organic acids, particularly hydroxycitric

acid, but attribution of the effect to a single component is

highly unlikely. Moreover, when we utilized both mixtures

derived from H. sabdariffa, polyphenols appeared to be

the compounds causing the inhibition of ERK-1/-2 (p42

and p44) phosphorylation. ERKs are important in cellular

growth and development (17, 43�48), and the effects

were detectable in cultures without FGF9, but statistical

significance was only achieved in the presence of the ligand

(Fig. 2). This effect is relevant because ERK-1/-2 phos-

phorylation was activated in FGFR3 (G380R) chondro-

cytes challenged with FGF9, confirming our previous

findings (28). The role of the original H. sabdariffa extract

may not be inferred from our data because it had no

significant effect on the level of phosphorylation with

or without FGF9, but it has been shown to target other

multiple components (49�54). However, we limited the

exploration to the MAPK pathway because ERK-1/-2

inhibition under these conditions is probably restricted to

chondrocytes, in which this signaling system regulates cell

growth, proliferation, and ECM accumulation (55�62).

The stimulation by FGF9 of mutated FGFR3 also

results in a dramatic decrease in ECM production in chon-

drocytes, an action that was reversed by H. sabdariffa.

The effect was ostensible even in the absence of FGF9 and

reached statistical significance after 10 days of treatment

(Fig. 3). Total values were lower than those observed

in wild type cells, indicating the probable contribution

Fig. 4. Chondrocyte proliferation comparing untreated cells
(control) and treated cells with Hibiscus sabdariffa and its
polyphenolic extract with or without FGF9 (25 ng/mL). Cell
viability was determined by the trypan blue method. Data
are expressed as mean9SD (n�6, in triplicate).
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of other mechanisms, but active studies suggest that the

differences are reduced with longer exposure time and

higher concentrations (data not shown). ECM enrichment

improves chondrocyte physiology due to the optimization

of the signaling microenvironment of FGFs (63, 64). This

effect is relevant in this environment because the forma-

tion of molecular complexes between growth factors and

ECM proteins regulates dynamic interactions between

proteins, bioavailability and function of many growth

factors, and the modulation of FGFR signaling (65�67).

It is therefore plausible that, in skeletal dysplasia and

in diseases with prominently degraded cartilage, FGF9/

FGFR3 modulators could prevent cartilage degeneration

and/or promote cartilage regeneration (68, 69).

Fig. 5. Illustrative summary of observed and proposed effects in the mutant chondrocyte model. Polyphenols target multiple
components that promote and maintain tissue homeostasis beyond their anti-inflammatory and antioxidant effects, and their
actions might be extended to disease prevention and intervention. Binding of fibroblast growth factor (FGF9) to its receptor
(FGFR3) activates several important signaling pathways that are associated with the overall response to inflammation and are
crucial in chondrocytes to regulate cell proliferation and extracellular matrix (ECM) generation. From the data, we consider the
possibility that the action of complete Hibiscus sabdariffa extract might be different from that observed with concentrated
polyphenols. In particular, polyphenols appear more active in the inhibition of ERK-1/-2 phosphorylation and in the increase
of ECM generation, whereas the combination of organic acids and polyphenols could be more active in reversing the intracellular
chloride accumulation and increasing cellular proliferation. H. sabdariffa reverses the toxic actions of the FGF9/FGFR3 inter-
action in mutated chondrocytes. The results indicate the need for a search for human models to fully establish actual mechanisms
as well as the potential modification of diets to achieve human health benefits. AKT (PKB): protein kinase B; ERK 1/2 (MAPK):
extracellular signal-regulated kinases 1 and 2; FGF: fibroblast growth factor; FGFR: fibroblast growth factor receptor; MEK1/2:
MAPK kinases 1 and 2; PI-3K: phosphatidylinositide 3-kinase; PLCg: phospholipase C gamma; RAF: rapidly accelerated
fibrosarcoma (serine/threonine-protein kinase); RAS: rat sarcoma protein (GTPase); STAT1: signal transducer and activator of
transcription 1.
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Accordingly, chondrocyte viability is low when cells

bear the (G380R) mutation of FGFR3, the likely con-

sequence of increased maturation and early cell death

(70, 71). The effect is highly dependent on the presence

of the ligand (FGF9), indicating the importance of active

growth factors in the vicinity. In this model, FGF9

decreased cell survival in a few hours. H. sabdariffa treat-

ment completely reversed the action of FGF9, and cell pro-

liferation was similar to that observed in controls (Fig. 4),

indicating the rescue of the FGFR3 (G380R) phenotype.

Experiments should follow to ascertain whether individual

compounds may elicit similar beneficial effects. How-

ever, safe concentrations are more difficult to achieve, and

observations in animal models suggest that the synergistic

action of natural compounds is a more likely possibility

(3, 31, 55). Stronger evidence could be provided by the

development of better in vivo and in vitro models employ-

ing human cells. It should be mentioned that recent cell

reprogramming technologies might be utilized to obtain

induced pluripotent stem cells differentiated into mutant

chondrocytes that may confirm the anabolic effects we

have found in chondrocytes treated with bioactive com-

pounds from H. sabdariffa. As preliminary results, im-

munoprecipitation experiments of FGFR3 suggest that

these bioactive compounds are not affecting the receptor

directly. Thus, the exploration of related signaling path-

ways other than ERK-1/-2 in chondrocytes and the effect

of some available drugs might also contribute to fully

uncovering the actual molecular mechanisms (72�74).

Perhaps it is time to contemplate significant dietary modi-

fications in humans by food design and supplementation

to obtain health benefits (75).

Conclusion

With the rationale that some nutrients with intrinsic anti-

inflammatory and antioxidative effects may mitigate a

deleterious response leading to degraded cartilage, we

assayed the activity of dietary polyphenols in murine cells

with the transduced human (G380R) mutation in FGFR3.

Most polyphenols had no effect, but those provided by

H. sabdariffa rescued chondrocytes from FGF9-induced

toxic effects, supporting the view that plant-derived diet-

ary products affect intracellular signaling networks and

may be safely utilized in the management of degraded car-

tilage phenotypes. H. sabdariffa rescued mutated FGFR3

chondrocytes, restoring normal growth, decreasing the

intracellular chloride concentration, inhibiting ERK-1/-2

phosphorylation, and increasing the generation of ECM

(Fig. 5). Our data indicate the crucial role of growth fac-

tors in the survival of chondrocytes and suggest effective

and applicable therapeutic strategies for patients with

degraded cartilage. H. sabdariffa would have the advan-

tage that it has been safely administered to large numbers

of humans for millennia, including pregnant women and

infants.
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Hospital Universitari de Sant Joan

IISPV

Universitat Rovira i Virgili

C/ Sant Joan s/n, ES-43201 Reus, Spain

Email: sfernandez@fiispv.cat
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