57 research outputs found

    Recovery of critical metals from dilute leach solutions – Separation of indium from tin and lead

    Get PDF
    The strategic metal indium is recovered from solutions containing tin and lead that are typical of those obtained from leach solutions of metal component fractions of electronic waste including the leach solutions from indium tin oxide thin film conductive layers that contain only indium and tin. Almost total recovery of the metals can be achieved from nitric, perchloric and acetic acid leach solutions using a novel cylindrical mesh electrode electrolysis cell under appropriate conditions. The optimum separation of indium from tin and lead is achieved by a novel three-stage process from nitric acid media in the presence of SCN− as a complexing agent. Lead is removed from dilute indium-tin-lead solutions in the first stage from 0.1 mol L−1 nitric acid solution by electrodeposition over an 8 h period in the absence of SCN− to give a residual solution containing a maximum of 2 mg L−1 of lead (97% recovery). Tin is removed in the second stage by electrodeposition over an 8 h period from the solution after addition of 0.02 mol L−1 SCN− to give a maximum residual electrolyte tin concentration of 3 mg L−1 (94% recovery). In the third stage indium is recovered at the anode of the cylindrical mesh electrode cell as an oxy-hydroxide phase by increasing the SCN− concentration to 0.1 mol L−1 and carrying out the electrolysis for a period of 24 h to give a residual solution containing 1 mg L−1 of indium (98% recovery).We acknowledge the support of an EPSRC/LINK WMR3 grant (GR/L03217) with Fluid Dynamics International Limited. We wish to thank Aleppo University for a scholarship to NY and Professor. J. D. Donaldson for all his advice and support

    Baseline study on chemical composition of Brunei Darussalam rivers

    Get PDF
    The research provides data of pH and conductivity, some anions (e. g. fluoride, chloride, bromide, nitrate, phosphate and sulphate), monovalent cations (e. g sodium, ammonium and potassium), divalent cations (e. g calcium and magnesium) heavy metals (e. g. iron, copper, zinc, nickel, cobalt, cadmium and manganese) and organic compounds – from water samples of rivers of Brunei Darussalam, namely, Brunei River, Belait River, Tutong River and Temburong River. The higher values of certain parameters with respect to the acceptable standard limits for river water indicate the pollution in river water samples of the study area, make the waters unsuitable for various applications and do pose a human health hazard. The pH levels in Brunei Darussalam is quite reassuring and mostly safe. Although there are some stretches of rivers that show slightly lower levels of pH, there is no cause for any alarm as these waterways are not sources of drinking water. As for anions and cations, the only anion of significant levels detected in Brunei Rivers is chloride whereas only monovalent cation detected in significant levels, is sodium. The concentrations of chloride and sodium ions are below the standard concentrations. Brunei Rivers are still free from chloride and sodium pollution. For heavy metals, only iron is detected in Brunei Rivers. Brunei being a oil based country experiments were done to identify levels of a numbers of significant toxic organic compounds, including, toluene and benzene which have been detected in the waters of the oil mining district of Belait District but are within normal limits. The use of a photolytic cell system to achieve the photodegradation of benzene, toluene, ethylenediaminetetra-acetic acid (EDTA) and the surfactant – hexadecyltrimethyl-ammonium bromide (C19H42NBr) is reported. The system has been optimised by investigating the effects of the addition of hydrogen peroxide (H202) as an oxidant and the addition of titanium dioxide (TiO2) as a catalyst. The results show that the photolytic system can be used to achieve >99% degradation of organic contaminants. The research also includes a final chapter on management system which covers water protection, pollution control and solid waste management in Brunei. In addition to investigating various factors of the solid waste management in Brunei, the researcher has also exposed some of the weaknesses that need immediate addressing. Various measures have been suggested to make Brunei's water more efficient. Moreover, ways of preserving the high quality of Brunei's water figures in this chapter.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Progesterone potentially degrades to potent androgens in surface waters.

    Get PDF
    Progesterone is a natural hormone, excreted in higher concentrations than estrogens, and has been detected in the aqueous environment. As with other compounds, it is transformed during wastewater treatment processes and in the environment. However, minor modifications to the structure may result in transformation products which still exhibit biological activity, so understanding what transformation products are formed is of importance. The current study was undertaken to identify putative transformation products resulting from spiking river waterwith progesterone in a laboratory-based degradation study and hence to followthe metabolic breakdown pathways. On the basis of literature reports and predictions from the EAWAG Bio catalysis/biodegradation database, target putative transformation productswere initially monitored under unit resolution mass spectrometry. The identity of these transformation products was confirmed by using accurate-mass quadrupole time-offlight. The study results highlight that transformation of progesterone can potentially create other classes of steroids, some of which may still be potent, and possess other types of biological activity.Jasper Ojoghoro is grateful to the Nigeria Tertiary Education Trust Funds (TETF), (DELSU/CRIP/TET/012) for providing the funding for this study

    Management and outcomes of gastrointestinal congenital anomalies in low, middle and high income countries: Protocol for a multicentre, international, prospective cohort study

    Get PDF
    Introduction Congenital anomalies are the fifth leading cause of death in children <5 years of age globally, contributing an estimated half a million deaths per year. Very limited literature exists from low and middle income countries (LMICs) where most of these deaths occur. The Global PaedSurg Research Collaboration aims to undertake the first multicentre, international, prospective cohort study of a selection of common congenital anomalies comparing management and outcomes between low, middle and high income countries (HICs) globally. Methods and analysis The Global PaedSurg Research Collaboration consists of surgeons, paediatricians, anaesthetists and allied healthcare professionals involved in the surgical care of children globally. Collaborators will prospectively collect observational data on consecutive patients presenting for the first time, with one of seven common congenital anomalies (oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation and Hirschsprung''s disease). Patient recruitment will be for a minimum of 1 month from October 2018 to April 2019 with a 30-day post-primary intervention follow-up period. Anonymous data will be collected on patient demographics, clinical status, interventions and outcomes using REDCap. Collaborators will complete a survey regarding the resources and facilities for neonatal and paediatric surgery at their centre. The primary outcome is all-cause in-hospital mortality. Secondary outcomes include the occurrence of postoperative complications. Chi-squared analysis will be used to compare mortality between LMICs and HICs. Multilevel, multivariate logistic regression analysis will be undertaken to identify patient-level and hospital-level factors affecting outcomes with adjustment for confounding factors. Ethics and dissemination At the host centre, this study is classified as an audit not requiring ethical approval. All participating collaborators have gained local approval in accordance with their institutional ethical regulations. Collaborators will be encouraged to present the results locally, nationally and internationally. The results will be submitted for open access publication in a peer reviewed journal

    Trace elements in glucometabolic disorders: an update

    Get PDF
    Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation &lt;92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p&lt;0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p&lt;0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Cohort Profile: Burden of Obstructive Lung Disease (BOLD) study

    Get PDF
    The Burden of Obstructive Lung Disease (BOLD) study was established to assess the prevalence of chronic airflow obstruction, a key characteristic of chronic obstructive pulmonary disease, and its risk factors in adults (≥40 years) from general populations across the world. The baseline study was conducted between 2003 and 2016, in 41 sites across Africa, Asia, Europe, North America, the Caribbean and Oceania, and collected high-quality pre- and post-bronchodilator spirometry from 28 828 participants. The follow-up study was conducted between 2019 and 2021, in 18 sites across Africa, Asia, Europe and the Caribbean. At baseline, there were in these sites 12 502 participants with high-quality spirometry. A total of 6452 were followed up, with 5936 completing the study core questionnaire. Of these, 4044 also provided high-quality pre- and post-bronchodilator spirometry. On both occasions, the core questionnaire covered information on respiratory symptoms, doctor diagnoses, health care use, medication use and ealth status, as well as potential risk factors. Information on occupation, environmental exposures and diet was also collected
    corecore