1,841 research outputs found

    Symbiotic fungi and the mountain pine beetle: Beetle mycophagy and fungal interactions with parasitoids and microorganisms

    Get PDF

    Tri-Trophic Linkages in Disease: Pathogen Transmission to Rainbow Trout Through Stonefly Prey

    Get PDF
    ABSTRACT Relationships between macroinvertebrates and microorganisms in aquatic environments are only poorly understood despite the fact that many aquatic macroinvertebrates feed on microbial biofilms during some life stage. Better understanding of trophic interactions between microbial biofims, macroinvertebrates, and fish may also help control fish diseases and loss of natural resources. It has also been suggested that pollution, habitat fragmentation, and poor water quality may contribute to increased pathogenesis and mortality in fish. Increased disease incidence is difficult to assess, however, in part because of the complexity of pathogen transmission dynamics. Several environmental pathogens exist whose reservoir(s) and means of transmission remain poorly understood, highlighting the need to study pathogen ecology and interactions with organisms other than susceptible hosts. Aeromonas salmonicida is rarely isolated from freshwater sediments. However, stoneßynymphswere found to frequently harbor A. salmonicida and were shown to preferentially feed on the bacterium. Rainbow trout juveniles were presented with different feeding regimes to determine the transmission capacity of nymphs, and all fish fed stoneflies harboring A. salmonicida expressed symptoms of disease. Although current rates of furunculosis in freshwater ecosystems are unknown, trout primarily feed on stoneflies when water oxygen levels are high and temperatures are low (winter months), which is presumed to correspond to high resistance to the pathogen. Given that furunculosis is associated with physiological stress and higher water temperatures, its natural incidence may change in response to global or regional climatological effects

    Multiabsorber Transition-Edge Sensors for X-Ray Astronomy

    Get PDF
    We are developing arrays of position-sensitive microcalorimeters for future x-ray astronomy applications. These position-sensitive devices commonly referred to as hydras consist of multiple x-ray absorbers, each with a different thermal coupling to a single-transition-edge sensor microcalorimeter. Their development is motivated by a desire to achieve very large pixel arrays with some modest compromise in performance. We report on the design, optimization, and first results from devices with small pitch pixels (<75 m) being developed for a high-angular and energy resolution imaging spectrometer for Lynx. The Lynx x-ray space telescope is a flagship mission concept under study for the National Academy of Science 2020 decadal survey. Broadband full-width-half-maximum (FWHM) resolution measurements on a 9-pixel hydra have demonstrated E(FWHM) = 2.23 0.14 eV at Al-K, E(FWHM) = 2.44 0.29 eV at Mn-K, and E(FWHM) = 3.39 0.23 eV at Cu-K. Position discrimination is demonstrated to energies below <1 keV and the device performance is well-described by a finite-element model. Results from a prototype 20-pixel hydra with absorbers on a 50-m pitch have shown E(FWHM) = 3.38 0.20 eV at Cr-K1. We are now optimizing designs specifically for Lynx and extending the number of absorbers up to 25/hydra. Numerical simulation suggests optimized designs could achieve 3 eV while being compatible with the bandwidth requirements of the state-of-the art multiplexed readout schemes, thus making a 100,000 pixel microcalorimeter instrument a realistic goal

    Effect of Localized Vibration Using Massage Gun at 40hz and 50hz on Blood Flow

    Get PDF
    Data has shown that whole body vibration can positively affect blood flow, however, there are very few studies on the effect of localized therapeutic vibration on arterial blood flow. Occupational studies looking at localized vibration effects on skin blood flow normally include high frequency settings. In the last few years, massage guns have become popular, but they operate at lower frequencies. Currently, there is no data on the effects of localized vibration from massage guns on arterial blood flow. PURPOSE: To compare the effects of two different frequencies of localized vibration on blood flow in the popliteal artery. METHODS: 12 subjects participated in this study (8 males and 4 females). Mean age was 22.7±1.6 years; mean height was 181.1±11.8 cm; mean weight was 78.2±16.2 kg. Participants wore shorts to give access to the popliteal artery. Participants were hooked to ECG leads to control measurement of artery diameter and then laid on a treatment table in a prone position with a foam roller under their ankles. Once at resting heart rate, baseline blood flow readings were taken using ultrasound, which measured TA Mean and Volume Flow. The participants were then randomly given a 5-minute treatment of control with no vibration or vibration at 40hz or 50hz. Blood flow readings were taken immediately post-treatment and then every minute for 5 minutes after. RESULTS: A two-factor repeated measures analysis was performed. Each subject was measured under all levels of condition (Control 5 min, 40hz 5 min, and 50hz 5 min) and time (baseline, post, post1-5). TA Mean and Volume Flow for both 40hz and 50hz were significantly greater than control (p=0.0020 and p=0.0110 respectively). The effect of time was significant (

    Complete Genome Sequence of Streptococcus pneumoniae Strain BVJ1JL, a Serotype 1 Carriage Isolate from Malawi.

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and bacteremia. Serotype 1 is rarely carried but is commonly associated with invasive pneumococcal disease, and in the African "meningitis belt," it is prone to cause cyclical epidemics. We report the complete genome sequence of S. pneumoniae serotype 1 strain BVJ1JL, isolated in Malawi

    Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions

    Full text link
    We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m_c and m_b on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. As an example of their use, we study the difference in the Z total cross sections at the Tevatron and LHC in the 4- and 5-flavour schemes. Significant differences are found, illustrating the need to resum large logarithms in Q^2/m_b^2 by using the 5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are imposed on associated (massive) b-quarks, as is the case for the experimental measurement of Z b bbar production and similar processes.Comment: 40 pages, 11 figures. Grids can be found at http://projects.hepforge.org/mstwpdf/ and in LHAPDF V5.8.4. v2: version published in EPJ

    Normal table of Xenopus development: a new graphical resource

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zahn, N., James-Zorn, C., Ponferrada, V. G., Adams, D. S., Grzymkowski, J., Buchholz, D. R., Nascone-Yoder, N. M., Horb, M., Moody, S. A., Vize, P. D., & Zorn, A. M. Normal table of Xenopus development: a new graphical resource. Development, 149(14), (2022): dev200356, https://doi.org/10.1242/dev.200356.Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic ‘Normal Table of Xenopus laevis (Daudin)’ and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a ‘Landmarks Table’ of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.This work was supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development [P41 HD064556 to A.M.Z. and P.D.V. (Xenbase)] and the National Institute of Child Health and Human Development [P40-OD010997 and R24-OD030008 to M.H. (National Xenopus Resource)]. Open Access funding provided by Cincinnati Children's Hospital Medical Center. Deposited in PMC for immediate release

    A Randomized Trial to Identify Accurate and Cost-Effective Fidelity Measurement Methods for Cognitive-Behavioral Therapy: Project FACTS Study Protocol

    Get PDF
    Background: This randomized trial will compare three methods of assessing fidelity to cognitive-behavioral therapy (CBT) for youth to identify the most accurate and cost-effective method. The three methods include self-report (i.e., therapist completes a self-report measure on the CBT interventions used in session while circumventing some of the typical barriers to self-report), chart-stimulated recall (i.e., therapist reports on the CBT interventions used in session via an interview with a trained rater, and with the chart to assist him/her) and behavioral rehearsal (i.e., therapist demonstrates the CBT interventions used in session via a role-play with a trained rater). Direct observation will be used as the gold-standard comparison for each of the three methods. Methods/design: This trial will recruit 135 therapists in approximately 12 community agencies in the City of Philadelphia. Therapists will be randomized to one of the three conditions. Each therapist will provide data from three unique sessions, for a total of 405 sessions. All sessions will be audio-recorded and coded using the Therapy Process Observational Coding System for Child Psychotherapy-Revised Strategies scale. This will enable comparison of each measurement approach to direct observation of therapist session behavior to determine which most accurately assesses fidelity. Cost data associated with each method will be gathered. To gather stakeholder perspectives of each measurement method, we will use purposive sampling to recruit 12 therapists from each condition (total of 36 therapists) and 12 supervisors to participate in semi-structured qualitative interviews. Discussion: Results will provide needed information on how to accurately and cost-effectively measure therapist fidelity to CBT for youth, as well as important information about stakeholder perspectives with regard to each measurement method. Findings will inform fidelity measurement practices in future implementation studies as well as in clinical practice. Trial registration: NCT02820623, June 3rd, 2016

    Probing the Interiors of Very Hot Jupiters Using Transit Light Curves

    Get PDF
    Accurately understanding the interior structure of extra-solar planets is critical for inferring their formation and evolution. The internal density distribution of a planet has a direct effect on the star-planet orbit through the gravitational quadrupole field created by the rotational and tidal bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love number (k2pk_{2p}, twice the apsidal motion constant), a bulk physical characteristic of the planet that depends on the internal density distribution, including the presence or absence of a massive solid core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal precession for very hot Jupiters (a0.025a \lesssim 0.025 AU), exceeding the effects of general relativity and the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the planetary interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal precession, we find that changes in transit shapes are much more important than transit timing variations. With its long baseline of ultra-precise photometry, the space-based \emph{Kepler} mission can realistically detect apsidal precession with the accuracy necessary to infer the presence or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e0.003e \simeq 0.003. The signal due to k2pk_{2p} creates unique transit light curve variations that are generally not degenerate with other parameters or phenomena. We discuss the plausibility of measuring k2pk_{2p} in an effort to directly constrain the interior properties of extra-solar planets.Comment: updated, improved, and expanded manuscript has been accepted by the Astrophysical Journal; 19 pages, 7 figure
    corecore