32 research outputs found

    In Older Adults the Antidepressant Effect of Repetitive Transcranial Magnetic Stimulation Is Similar but Occurs Later Than in Younger Adults

    Get PDF
    BackgroundTreatment resistant depression is common in older adults and treatment is often complicated by medical comorbidities and polypharmacy. Repetitive transcranial magnetic stimulation (rTMS) is a treatment option for this group due to its favorable profile. However, early influential studies suggested that rTMS is less effective in older adults. This evidence remains controversial.MethodsHere, we evaluated the rTMS treatment outcomes in a large international multicenter naturalistic cohort of >500 patients comparing older vs. younger adults.ResultsWe show that older adults, while having similar antidepressant response to younger adults, respond more slowly, which may help to explain differences from earlier studies when the duration of a treatment course was shorter.ConclusionsSuch evidence helps to resolve a long-standing controversy in treating older depressed patients with rTMS. Moreover, these findings provide an important data point in the call to revise policy decisions from major insurance providers that have unfairly excluded older adults

    A Century Searching for the Neurons Necessary for Wakefulness

    Get PDF
    Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse “reticular activating system,” the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal

    In Older Adults the Antidepressant Effect of Repetitive Transcranial Magnetic Stimulation Is Similar but Occurs Later Than in Younger Adults

    Get PDF
    Funding Information: AJO-M was the national coordinator for Portugal of a non-interventional study (EDMS-ERI-143085581, 4.0) to characterize a Treatment-Resistant Depression Cohort in Europe, sponsored by Janssen-Cilag, Ltd (2019–2020), is the recipient of a grant from Schuhfried GmBH for norming and validation of cognitive tests, and is the national coordinator for Portugal of trials of psilocybin therapy for treatment-resistant depression, sponsored by Compass Pathways, Ltd (EudraCT number 2017-003288-36), and of esketamine for treatment-resistant depression, sponsored by the Janssen-Cilag, Ltd (EudraCT NUMBER: 2019-002992-33). AP-L is a co-founder of Linus Health and TI Solutions AG; serves on the scientific advisory boards for Starlab Neuroscience, Magstim Inc., Radiant Hearts, and MedRhythms; and is listed as an inventor on several issued and pending patents on the real-time integration of non-invasive brain stimulation with electroencephalography and magnetic resonance imaging. None of the aforementioned agencies or companies had a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Funding Information: GC was funded by the Fundação para a Ciência e Tecnologia (FCT; Portugal) through a PhD Scholarship (SFRH/BD/130210/2017). AB was supported by the NIH (NS114405-02, MH120441-01). AJO-M was funded by the FCT (Portugal) through a Junior Research and Career Development Award from the Harvard Medical School—Portugal Program (HMSP-ICJ/0020/2011). GC and AJO-M were supported by grant PTDC/MED-NEU/31331/2017, and AJO-M by grant PTDC/MED-NEU/30302/2017, funded by national funds from FCT/MCTES and co-funded by FEDER, under the Partnership Agreement Lisboa 2020—Programa Operacional Regional de Lisboa. AJO-M was also funded by a Starting Grant from the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 950357). Publisher Copyright: Copyright © 2022 Cotovio, Boes, Press, Oliveira-Maia and Pascual-Leone.Background: Treatment resistant depression is common in older adults and treatment is often complicated by medical comorbidities and polypharmacy. Repetitive transcranial magnetic stimulation (rTMS) is a treatment option for this group due to its favorable profile. However, early influential studies suggested that rTMS is less effective in older adults. This evidence remains controversial. Methods: Here, we evaluated the rTMS treatment outcomes in a large international multicenter naturalistic cohort of >500 patients comparing older vs. younger adults. Results: We show that older adults, while having similar antidepressant response to younger adults, respond more slowly, which may help to explain differences from earlier studies when the duration of a treatment course was shorter. Conclusions: Such evidence helps to resolve a long-standing controversy in treating older depressed patients with rTMS. Moreover, these findings provide an important data point in the call to revise policy decisions from major insurance providers that have unfairly excluded older adults.publishersversionpublishe

    Hyperactivity, impulsivity, and inattention in boys with cleft lip and palate: relationship to ventromedial prefrontal cortex morphology

    Get PDF
    The purpose of this study is to evaluate quantitative structural measures of the ventromedial prefrontal cortex (vmPFC) in boys with isolated clefts of the lip and/or palate (ICLP) relative to a comparison group and to associate measures of brain structure with quantitative measures of hyperactivity, impulsivity, and inattentiveness. A total of 50 boys with ICLP were compared to 60 healthy boys without clefts. Magnetic resonance imaging brain scans were used to evaluate vmPFC structure. Parents and teachers provided quantitative measures of hyperactivity, impulsivity, and inattentiveness using the Pediatric Behavior Scale. Boys with ICLP had significantly higher ratings of hyperactivity/impulsivity/inattention (HII) and significantly increased volume of the right vmPFC relative to the comparison group. There was a direct relationship between HII score and vmPFC volume in both the ICLP group and control group, but the relationship was in the opposite direction: in ICLP, the higher the vmPFC volume, the higher the HII score; for the comparison group, the lower the vmPFC volume, the greater the HII score. The vmPFC is a region of the brain that governs behaviors of hyperactivity, impulsivity and inattention (HII). In boys with ICLP, there are higher levels of HII compared to the controls and this is directly related to a significantly enlarged volume of the right vmPFC. Enlargement of this region of the brain is therefore considered to be pathological in the ICLP group and supports the notion that abnormal brain structure (from abnormal brain development) is the underlying etiology for the abnormal behaviors seen in this population

    Brain lesions disrupting addiction map to a common human brain circuit

    Get PDF
    Drug addiction is a public health crisis for which new treatments are urgently needed. In rare cases, regional brain damage can lead to addiction remission. These cases may be used to identify therapeutic targets for neuromodulation. We analyzed two cohorts of patients addicted to smoking at the time of focal brain damage (cohort 1 n = 67; cohort 2 n = 62). Lesion locations were mapped to a brain atlas and the brain network functionally connected to each lesion location was computed using human connectome data (n = 1,000). Associations with addiction remission were identified. Generalizability was assessed using an independent cohort of patients with focal brain damage and alcohol addiction risk scores (n = 186). Specificity was assessed through comparison to 37 other neuropsychological variables. Lesions disrupting smoking addiction occurred in many different brain locations but were characterized by a specific pattern of brain connectivity. This pattern involved positive connectivity to the dorsal cingulate, lateral prefrontal cortex, and insula and negative connectivity to the medial prefrontal and temporal cortex. This circuit was reproducible across independent lesion cohorts, associated with reduced alcohol addiction risk, and specific to addiction metrics. Hubs that best matched the connectivity profile for addiction remission were the paracingulate gyrus, left frontal operculum, and medial fronto-polar cortex. We conclude that brain lesions disrupting addiction map to a specific human brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.Lesions resulting in addiction remission occur in multiple different brain locations but map to a specific brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.</p

    The Mitochondrial Genome of Toxocara canis

    Get PDF
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Sustained, Effortless Weight Loss after Damage to the Left Frontoinsular Cortex: A Case Report

    No full text
    This case report highlights a possible consequence of damage to the left frontoinsular region. A 53-year-old woman with chronic obesity and headaches presented with seizure, leading to the discovery and resection of a large sphenoid wing meningioma. Postoperative brain imaging revealed loss of the left frontoinsular cortex and portions of the underlying white matter, claustrum, and striatum. Throughout her adult life, this patient had tried and failed to lose weight, but after surgery, she no longer desired to eat large meals, and without effort, her body mass index decreased from 38.6 (85th percentile) to 24.9 (25th percentile). Combined with previous research implicating the insular cortex in interoception, appetite, and drug-related urges, her reduced hunger and effortless weight loss after resection of the left frontoinsular cortex suggest that this region of the human brain may play a role in hunger-related urges that contribute to overeating

    Network localization of hemichorea-hemiballismus

    No full text
    corecore