191 research outputs found

    Farm animals as a critical link between environmental and human health impacts of micro-and nanoplastics

    Get PDF
    Plastic pollution is an increasing global health concern, particularly the ever-increasing amount of tiny plastic particles commonly referred to as micro- and nanoplastics (MNPs). Most research to date on MNP exposure and hazards has focused on environmental species such as aquatic organisms and, more recently, humans, leaving impacts on farm animals largely unstudied. MNPs have been detected in all environmental compartments, including agricultural environments, farm animals and food products originating from them. The health of farm animals can be directly affected by MNPs, while humans can be affected by MNPs present in animal-derived food products. In this perspective article, we argue that MNP research should give more attention to farm animals forming a critical link between the environment and human health. Here, we summarize evidence on sources, exposure routes, levels in farm animals, and potential health effects of MNPs on farm animals, and identify knowledge gaps for future research, such as effects of MNPs on reproduction and development. In particular, the bovine embryo model is a promising model to study effects of MNPs on early development of both farm animals and humans. This perspective article signals the need for follow up studies that will increase our understanding of the transfer of MNPs between environment, farm animals, and humans, and the potential of farm animals to serve as an indicator for other animals, including humans

    Cell transformation assays for prediction of carcinogenic potential: State of the science and future research needs

    Get PDF
    Copyright @ 2011 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting

    Measuring recovery in participants with a schizophrenia spectrum disorder: validation of the Individual Recovery Outcomes Counter (I.ROC)

    Get PDF
    Background: To improve recovery in mental health, validated instruments are needed. Aims: This study evaluates psychometric properties of the Individual Recovery Outcomes Counter (I.ROC) in a Dutch population of participants with a schizophrenia spectrum disorder (SSD). Methods: 326 participants completed the I.ROC at baseline (n = 326), six months (n = 155) and twelve months (n = 84) as part of a routine outcome assessment. Reliability, validity, sensitivity to change, and internal factor structure were examined. Results: Participants evaluated the I.ROC as comprehensive. Internal consistency of the I.ROC (α = 0.88) and test-retest reliability (r =.85, p <.001) are good. Negative moderate correlations with the total score of the PANSS (r=-.50, p <.001) and the HoNOS (r=-.52, p <.001) were found, and a small negative correlation with the FR tool (r=-.36, p <.001). Moderate positive correlation with the MANSA (r =.55, p <.001) and the RAS (r =.60, p <.001) were found. The mean total I.ROC scores increased significantly between time points (F(2,166) = 6.351, p <.005), although differences were small. Confirmatory factor analysis showed that fit indices for the one-, two-, and four-factor model are comparable. Conclusions: The I.ROC is a valid and reliable instrument, with sensitivity to change, to map recovery in participants with SSD

    Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correl

    Get PDF
    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 μg/ ml and methyl methanesulfonate (MMS) at 1750 μg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 μg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O 2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable followup to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo tests by reducing in vitro misleading positives. © The Author 2014

    Opportunities to integrate new approaches in genetic toxicology: An ILSI-HESI workshop report

    Get PDF
    Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.International Life Sciences Institute/Health and Environmental Sciences Institute Committe

    Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency.

    Get PDF
    In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in 'naïve' media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that 'naïve' conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions

    Serial cardiac biomarkers, pulmonary artery pressures and traditional parameters of fluid status in relation to prognosis in patients with chronic heart failure:Design and rationale of the BioMEMS study

    Get PDF
    AimsHeart failure (HF), a global pandemic affecting millions of individuals, calls for adequate predictive guidance for improved therapy. Congestion, a key factor in HF-related hospitalizations, further underscores the need for timely interventions. Proactive monitoring of intracardiac pressures, guided by pulmonary artery (PA) pressure, offers opportunities for efficient early-stage intervention, since haemodynamic congestion precedes clinical symptoms.MethodsThe BioMEMS study, a substudy of the MONITOR-HF trial, proposes a multifaceted approach integrating blood biobank data with traditional and novel HF parameters. Two additional blood samples from 340 active participants in the MONITOR-HF trial were collected at baseline, 3-, 6-, and 12-month visits and stored for the BioMEMS biobank. The main aims are to identify the relationship between temporal biomarker patterns and PA pressures derived from the CardioMEMS-HF system, and to identify the biomarker profile(s) associated with the risk of HF events and cardiovascular death.ConclusionSince the prognostic value of single baseline measurements of biomarkers like N-terminal pro-B-type natriuretic peptide is limited, with the BioMEMS study we advocate a dynamic, serial approach to better capture HF progression. We will substantiate this by relating repeated biomarker measurements to PA pressures. This design rationale presents a comprehensive review on cardiac biomarkers in HF, and aims to contribute valuable insights into personalized HF therapy and patient risk assessment, advancing our ability to address the evolving nature of HF effectively.Design and rationale of the BioMEMS study. QoL, quality of life. Graphical abstract is created with BioRender.com imag
    corecore