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Abstract

Organophosphorus insecticide self-poisoning is a major global health prob-
lem, killing over 100,000 people annually. It is a complex multi-organ con-
dition, involving the inhibition of cholinesterases, and perhaps other en-
zymes, and the effects of large doses of ingested solvents. Variability between
organophosphorus insecticides—in lipophilicity, speed of activation, speed
and potency of acetylcholinesterase inhibition, and in the chemical groups
attached to the phosphorus—results in variable speed of poisoning onset,
severity, clinical toxidrome, and case fatality. Current treatment is mod-
estly effective, aiming only to reactivate acetylcholinesterase and counter
the effects of excess acetylcholine at muscarinic receptors. Rapid titration
of atropine during resuscitation is lifesaving and can be performed in the
absence of oxygen. The role of oximes in therapy remains unclear. Novel
antidotes have been tested in small trials, but the great variability in poison-
ing makes interpretation of such trials difficult. More effort is required to
test treatments in adequately powered studies.
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INTRODUCTION

Organophosphorus (OP) insecticide self-poisoning or attempted suicide is the most important
global form of acute poisoning, affecting over one million people each year and killing around
100,000 (1, 2). The introduction of these insecticides into global agricultural during the Green
Revolution in the 1960s (3) brought them into poor rural communities that were completely
unprepared to use or store them properly. Easy access to highly hazardous pesticides that are fatal
after ingestion of small amounts transformed previously nonlethal self-poisoning into suicides.
Suicide rates in countries such as Sri Lanka exploded as health care systems were simply unable
to deal with these fast-acting poisons (4).

Prevention of OP self-poisoning will need to be multifaceted, involving regulation to remove
the most hazardous pesticides from agricultural practice; the improved use and storage of pesti-
cides, particularly by small-scale farmers; and improved medical management. Data from Sri Lanka
(5) and Bangladesh (6) have shown that bans of the most highly hazardous OP insecticides [e.g.,
World Health Organization (WHO) Class I toxicity compounds (7) such as methyl parathion and
monocrotophos] have resulted in remarkable reductions in overall suicide rates without overtly
affecting agricultural yield or costs (6, 8). In Sri Lanka’s case, these bans, in combination with
bans of endosulfan and paraquat, have saved an estimated 93,000 lives over 20 years at a direct
regulatory cost of USD 1.4 per life-year saved (5, 9). Many thousands of lives will be saved if such
bans of highly hazardous OP insecticides are implemented worldwide (10).

Unfortunately, even where the highly hazardous Class I OPs have been banned, the case fatality
for self-poisoning with WHO Class II insecticides such as dimethoate remains high, with 10–20%
of people dying (11). More effective treatments are urgently required.

Although many millions of people have died from OP insecticide self-poisoning since the
1960s, the subject has gained relatively little attention (12). Instead, almost all research is focused
on OP nerve agent chemical weapons such as sarin. Immense effort and funds go into finding
novel antidotes for OP nerve agents, despite the relative paucity of cases and the huge human cost
of insecticide self-poisoning.

TOXICOLOGY AND CLINICAL COURSE

The pivotal mechanism of OP insecticide toxicity is inhibition of acetylcholinesterase (AChE)
(EC 3.1.1.7) at cholinergic synapses across the central nervous system and autonomic nervous
system, as well as at the neuromuscular junction (NMJ). An inability to break down acetylcholine
results in overstimulation of muscarinic and nicotinic receptors and clinical features that include
excess sweating, salivation, bronchospasm, bronchorrhea (pulmonary edema), bradycardia and
hypotension, NMJ dysfunction, and reduced consciousness (13–15).

Patients die from respiratory failure due to a combination of a lack of central respiratory drive,
NMJ dysfunction, and hypoxia from bronchorrhea. Patients who survive long enough to be hospi-
talized will need resuscitation with oxygen, fluids, and a muscarinic receptor antagonist (typically
atropine). Many comatose patients require intubation and ventilation to maintain respiratory
function.

The timing of acute respiratory failure, and therefore the likelihood of surviving to reach
medical care, varies according to the dose and particular OP insecticide ingested (Figure 1a).
Patients ingesting very large doses or highly toxic pesticides will more rapidly inhibit a clinically
significant proportion of their AChE and exhibit features earlier. Lipid solubility and the need for
conversion to an active poison (see the section titled Organophosphorus Insecticide Chemistry)
also likely affect the time to onset. Out-of-hospital cardiorespiratory arrest in most parts of the
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Figure 1
Intubation and extubation timelines for self-poisoning with several particular OP insecticides. (a) Time to first intubation according to
OP insecticide ingested, showing marked differences between pesticides. The gray area indicates the 24–96 h period during which late
respiratory failure (intermediate syndrome) is said to occur. However, some patients developed sudden respiratory failure both before
and after this time period, up to 115 h postintubation. A large proportion of patients with chlorpyrifos, dimethoate, or quinalphos
self-poisoning were intubated around admission. (b) Effect of the time to first intubation on the duration of ventilation. Patients
intubated within 24 h of admission had a shorter time to final extubation compared to patients intubated after 24 h. In both panels, the
bars show median (IQR) time. Abbreviations: IQR, interquartile range; OP, organophosphorus. Figure adapted from Reference 25
with permission from Oxford University Press.

world will result in the patient’s death; in a Korean study, in a location with an effective emergency
ambulance system, only 22% and 10% of insecticide-poisoned patients with an out-of-hospital
cardiac arrest survived to admission and discharge, respectively (16).

Patients who reach a hospital in time to be intubated and ventilated may still die from OP
poisoning (17, 18). High-dose dimethoate self-poisoning often results in death from cardiovascular
shock that is resistant to atropine and vasopressors (11, 19), which may be due in part to the effect of
solvents in combination with the OP active ingredient (see the section titled Solvent and Ethanol
Coingestants). In addition, patients who become unconscious before hospital presentation may
aspirate their stomach contents, resulting in aspiration pneumonia and/or acute respiratory distress
syndrome, or they may suffer hypoxic brain injury from which they do not recover (20, 21).

Wadia et al. (22) and then Senanayake & Karalliedde (23) described a delayed respiratory
failure, called type II respiratory failure or intermediate syndrome, respectively, occurring in
conscious patients that seems to be due to NMJ dysfunction of particularly proximal muscles.
This respiratory failure contrasts with that which occurs earlier in unconscious patients, where a
loss of central respiratory drive is likely to be a major component (24). Patients with late respiratory
failure (occurring after 24 h) often require ventilation for many days [in one study, for a median
of 284 h compared to just 45 h for those intubated before 24 h (25)] (Figure 1b), leaving them at
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high risk of complications from immobility and mechanical ventilation. This delayed respiratory
failure may occur after resolution of the acute cholinergic crisis, as originally described (23). It can
also occur at the same time as the acute cholinergic syndrome and reduced consciousness (25);
some patients effectively wake up from the central effects of the OP insecticide but continue to
have a respiratory paralysis due to peripheral effects.

OP insecticides also inhibit the plasma enzyme butyrylcholinesterase (BuChE) (EC 3.1.1.8);
however, this inhibition appears to have no substantial clinical effect beyond a potential small
benefit from stoichiometric binding to the OP insecticide in plasma, lowering its concentration.
There is also marked variation in the degree to which particular OP insecticides inhibit BuChE
versus AChE (26), suggesting that BuChE inhibition is not a good marker of AChE inhibition,
unless the specific OP is known.

NOVEL TOXICOLOGY

Casida & Quistad (27, 28) have reported OP inhibition of a range of enzymes across multiple body
systems in animal models. This inhibition, where investigated, does not appear to be important for
acute rodent OP toxicity (see, e.g., 29). Their role has not yet been studied in poisoned humans,
and it is possible that some may be of clinical relevance.

The OP insecticide chlorpyrifos potently inhibits brain monoacylglycerol (MAG) lipase activ-
ity, a key degrading enzyme of the endogenous endocannabinoid system (30). MAG lipase inhi-
bition results in raised concentration of the cannabinoid agonist 2-arachidonoylglycerol (2-AG)
in the brain, which is associated with hypomobility in rodents (31). A second endocannabinoid-
degrading enzyme, fatty acid amide hydrolase (FAAH), is also inhibited by the OP insecticide
profenofos, but its inhibition does not correlate with clinical effects (31, 32). Chlorpyrifos is a
common WHO Class II OP insecticide responsible for many deaths worldwide (11, 33). Simi-
lar to all OP poisoning, chlorpyrifos is acutely associated with coma and paralysis; it is possible
that raised 2-AG has a role in the coma. Human studies are required but will be complex due
to the difficulty of measuring the activity of an enzyme (i.e., MAG lipase) that does not occur in
the blood. Plasma cannabinoid concentrations can be measured, and increased concentrations in
acute poisoning could be suggestive of reduced breakdown. However, plasma activity may not
necessarily correlate with activity in the brain, the presumed site of key activity (31).

ORGANOPHOSPHORUS INSECTICIDE CHEMISTRY

Many hundreds of OP insecticides were developed and introduced into global agriculture in the
twentieth century. They vary in multiple important ways, including the degree of lipid solubility,
the alkyl groups attached to the phosphorus, the rate of activation (conversion from thion to
oxon), and the rate of AChE inhibition. These differences result in marked variation in toxicity,
the speed of onset, and the clinical syndrome after ingestion (34). Fortunately, a smaller range of
compounds is typically used for agriculture in any one area, reducing the variation in self-poisoning
seen among patients.

OP insecticides vary widely in their lipid solubility. Some OP insecticides are relatively hy-
drophilic with log Kow (log P) values <1.0 [e.g., dimethoate (0.76) and trichlorfon (0.51)], while
others are highly lipophilic with high log Kow values [e.g., chlorpyrifos (5.05), dichlofenthion
(5.14), and profenofos (4.56)] (35). Lipophilicity markedly affects the volume of distribution, the
acuteness of toxicity, and both the duration and recrudescence of toxicity, as shown in rat studies
of trichlorfon and dichlofenthion (36). Poisoning with lipophilic insecticides results in relatively
minor early clinical features, recurrence of toxicity, delayed respiratory failure, and prolonged
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Figure 2
Structure of representative OP insecticides. The figure demonstrates (a,c,f ) thions (P==S) and (b,d,e) oxons (P==O), as well as (d )
dimethoxy, (a,b,c) diethoxy, and (e,f ) S-alkyl OP insecticides. Figure adapted from Reference 34 with permission from Elsevier.

cholinesterase inhibition due to sustained delivery from fat stores to the systemic circulation (11,
25, 37). Poisoning with hydrophilic OP insecticides often produces relatively acute poisoning with
rapid resolution if the patient survives (11).

In addition, the quantity of patient fat affects the outcome of poisoning with lipophilic OP
insecticides. A Korean study of overweight patients [body mass index (BMI) > 25] showed a
longer duration of ventilation, intensive care, and hospital admission after poisoning with highly
lipophilic OP insecticides compared to nonlipophilic OP insecticides (38). This difference between
highly lipophilic and nonlipophilic OP insecticides did not occur in patients with a BMI of 25 or
less.

Many OP insecticides are propoisons (i.e., thions) (Figure 2), with a P==S structure that must
be converted to a P==O (or oxon) structure to obtain effective cholinesterase inhibition. Thion
OPs are activated by cytochrome P450 (CYP450) enzymes in the liver and intestinal mucosa.
The precise CYP450s responsible vary according to the concentration of OP. For example, at low
concentrations, chlorpyrifos, diazinon, parathion, and malathion are all metabolized and activated
in vitro by CYP1A2 and 2B6 (39, 40). However, at the higher concentrations likely to occur from
self-poisoning, CYP3A4 becomes dominant. The CYP450 enzymes involved in the metabolism
of active oxons to inactive metabolites are less clear. The rates of conversion may determine the
speed of inhibition and speed of onset of clinical features. However, this does not appear to always
be a key rate-limiting step since a highly potent thion such as parathion, which must be converted
in vivo to paraoxon, can induce clinical features, including coma and respiratory arrest, within
15–30 min of ingestion (41).

The speed of AChE inhibition itself may be a more important factor. In vitro studies have
shown widely differing rates of inhibition by oxons, with fenthion, for example, being a slow
inhibitor of AChE (39, 42). This relatively slow inhibition of AChE by fenthion and its slow
conversion to fenthion oxon, more than its high lipid solubility (producing low extracellular fluid
concentrations), may account for the much-delayed toxicity of fenthion compared to other lipid-
soluble thion OP insecticides such as chlorpyrifos (Figure 1a) (11, 25).

Most OP insecticides have either two methyl groups or two ethyl groups attached via oxygen
atoms to the phosphorus atom, which produces dimethoxy or diethoxy OP compounds (Figure 2).
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Figure 3
Inhibition, reactivation, and aging of AChE. A dimethoxy-phosphorylated OP oxon (methyl paraoxon)
inhibits AChE by phosphorylating the serine hydroxyl group at the enzyme’s active site (reaction 1). Active
AChE is regenerated by a hydroxyl ion attacking the phosphorylated serine residue, which removes the
phosphate moiety and releases active enzyme (reaction 2). Oximes speed up this reaction, ideally allowing
reactivation to match the rate of inhibition; however, very high doses of OP insecticide will overwhelm
oxime-induced reactivation. While in the inactive state, the enzyme is prone to the process of aging
(reaction 3) in which one alkyl side chain of the phosphoryl moiety is removed nonenzymatically, leaving a
hydroxyl group in its place and an aged AChE that can no longer be reactivated. Abbreviations: AChE,
acetylcholinesterase; OP, organophosphorus. Figure adapted from Reference 44 with permission from
Oxford University Press.

Binding to, and the inhibition of, AChE results in the production of either dimethoxy-
phosphorylated or diethoxy-phosphorylated AChE (Figure 3), irrespective of the actual OP
insecticide involved. A few are S-alkyl OP insecticides (Figure 2e,f ) in which one of the alkyl
groups is attached to the phosphorus via a sulfur atom. This chemistry has major implications
for the speed of aging and therefore the efficacy of oxime treatment.

Although the splitting of the choline–enzyme bond in normal acetylcholine metabolism is
completed within microseconds, the severing of the OP compound–enzyme bond is prolonged.
The half-life of this reaction depends on the chemistry of the substituted phosphate. The in vitro
half-life for spontaneous reactivation of human AChE inhibited by dimethoxy OPs is 0.7–0.86 h,
and 31–57 h for diethoxy inhibition (43). Spontaneous reactivation is therefore quicker with
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dimethoxy OPs; however, this is only clinically relevant in patients with more moderate OP toxicity
because the reactivated AChE is simply reinhibited again in patients with high OP concentrations.

Dimethoxy-phosphorylated AChE ages faster than diethoxy-phosphorylated AChE (Figure 3),
meaning that it rapidly becomes unresponsive to oximes with a half-life of 3.7 h (versus 33 h for
diethoxy) (44). A delay of 4 h to oxime therapy will mean that 50% of AChE is already irreversibly
inhibited. Oxime therapy may be effective for several days with diethoxy OP insecticides. Aging
of AChE inhibited by S-alkyl OP insecticides appears to occur very quickly, allowing no response
to oximes, even if given early (45).

OP insecticide toxicity may also be increased in the bottle, before ingestion, by chemical
reactions resulting from storage at warm temperatures (46). In a large Pakistani epidemic, the
conversion of malathion to the more toxic compound isomalathion in the bottle correlated with
increased toxicity (47). Increased toxicity has also been noted after the prolonged storage in warm
conditions of diazinon (48) and dimethoate (49).

SOLVENT AND ETHANOL COINGESTANTS

A person who drinks an agricultural OP insecticide is ingesting not only the active OP ingredi-
ent but also the chemicals with which the active ingredient has been formulated. Self-poisoning
worldwide is most commonly done with an emulsifiable concentrate (EC) liquid formulation (50)
for agricultural use that is bought from a shop. The insecticide has been designed to be mixed with
water, requiring a solvent, such as xylene, cyclohexanone, or petroleum distillates, and a surfactant.

The solvents used in OP insecticides vary by brand. Different brands of a single OP insecticide
may have different solvents; at the same time, similar solvents may be used for multiple OP
insecticides made by a single company. The concentrations of these compounds are often high—
many formulations are 40% OP active ingredient together with 40–60% solvents. For example,
dimethoate EC40 consists of 40% dimethoate, 40% cyclohexanone, and 5% xylene as well as a
surfactant.

The effect of ingesting large doses of solvents in OP insecticide self-poisoning is likely to
be significant. A porcine study showed that neither the dimethoate active ingredient nor the
cyclohexanone solvent, in quantities matching the parent formulation, was alone sufficient to
reproduce the cardiotoxicity seen in poisoned humans (51). However, poisoning with the same
quantities of dimethoate and cyclohexanone together did reproduce the toxicity. Replacement of
the cyclohexanone with another solvent resulted in a less toxic product.

The importance of solvents to human poisoning is not yet clear. Xylene and petroleum dis-
tillates have been detected in the urine of OP-poisoned patients (52) and at high concentrations
postmortem (53–55), and such solvents can produce neurotoxicity (56). However, most impor-
tantly, there have been at least three reports (57–59) of self-poisoning with OP or carbamate
insecticides formulated with methanol. This toxic alcohol is itself highly neurotoxic and requires
antidotal therapy as well as hemodialysis for the quantities that may be drunk from a pesticide
bottle (60). If OP insecticides are commonly formulated with methanol, then many cases of OP
poisoning may actually be mixed methanol and OP poisoning. A large Korean study showed that a
raised anion gap, not due to lactate, upon hospitalization was associated with a poor outcome (61).
However, this study assessed all pesticides, including paraquat; there were no data specifically on
OP insecticides and the role of solvents in raising the anion gap.

Another important coingestant is ethanol. Many patients, particularly men, ingest alcohol
around the time of poisoning (62, 63), and high doses of ethanol may induce coma and exacer-
bate respiratory failure. In a prospective study of self-poisoning with dimethoate EC40, alcohol
ingestion was associated with the ingestion of larger amounts of pesticide and a worse outcome
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(64). However, a higher blood ethanol concentration, independent of the plasma dimethoate con-
centration, was not associated with worse outcome. A retrospective study of 135 OP insecticide–
poisoned patients also reported that alcohol coingestion was associated with a worse outcome and
that blood ethanol concentration correlated with higher ingested doses of OP insecticide (65).
Using receiver operating characteristic analysis, the researchers identified a blood alcohol con-
centration of 173 mg/dL that was independently associated with death [odds ratio 4.9 (1.5 to 16.7)].
This independence differs from the dimethoate study in which controlling for the dimethoate con-
centration removed any association with alcohol, indicating that the effect of ethanol was due to
higher doses of ingested OP and not the ethanol itself.

Further clinical studies, with accurate measurement of all elements of the formulation
and ethanol in the plasma, are required to address the importance of coformulants in human
self-poisoning.

CLASSICAL TREATMENT OF ORGANOPHOSPHORUS INSECTICIDE
POISONING

The primary cause of death after anticholinesterase poisoning is respiratory failure and hypoxemia
resulting from muscarinic effects on the cardiovascular and pulmonary systems (i.e., bronchospasm,
bronchorrhea, aspiration, bradydysrhythmias, or hypotension), nicotinic effects on skeletal muscles
(i.e., weakness and paralysis), loss of central respiratory drive, and seizures (rare).

Therefore, initial treatment for a patient exposed to OP compounds should be directed at
ensuring an adequate airway, oxygenation, and ventilation and at stabilizing cardiorespiratory
function by reversing excessive muscarinic effects (34, 66). Once the patient is stable, the adminis-
tration of an AChE-reactivating oxime drug, such as pralidoxime or obidoxime, can be considered
along with the need for skin and/or gastric decontamination.

Atropine

The use of atropine in OP insecticide poisoning has been accepted practice since the 1950s (67, 68);
however, the preferred regimen has been clarified only recently. Atropine must be administered
until the features of the acute cholinergic syndrome have settled: In particular, the bronchorrhea
must be resolved and the lungs clear (while being aware of focal consolidation due to aspiration
that will not resolve with atropine), the heart rate adequate (around 80 beats/min), and the blood
pressure adequate (a systolic blood pressure greater than 80–90 mm Hg). This status is referred to
as being atropinized. Unfortunately, such doses of atropine do not counter the central loss of res-
piratory drive or NMJ dysfunction; therefore, most severely poisoned patients require intubation
and mechanical ventilation.

A systematic review of treatment guidelines in 2002–2003 found 33 different recommendations
for administering atropine to resuscitate an OP insecticide–poisoned patient (69). Most recom-
mended a range of fixed atropine doses (e.g., 2–5 mg) given every 5–15 min without titration to
effect. Comparing the time to give 23.4 mg, the median dose in a Sri Lankan cohort of patients,
the different regimens took from 8 to 1,380 min. Several regimens took more than 4 h to give
sufficient atropine to stabilize patients. Administration of the high doses needed by some patients
required many hours, while leaving the patients dangerously unstable. In the systematic review,
one regimen stood out—that of Cynthia Aaron (70), who recommended giving 1–2 mg initially
and then doubling the dose every 5 min in the absence of a response. This regimen took only 15 to
20 min to give 23.4 mg, could give much higher doses quickly if required, and was titrated to effect.

This regimen was incorporated into a clinical guideline (66) and is now recommended
in the majority of guidelines worldwide (71) following a randomized controlled trial (RCT)
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performed in Bangladesh (72). This RCT tested the standard therapy (2–5 mg every
10–15 min, followed by an infusion) with Aaron’s regimen (1.8 to 3 mg every 5 min, doubled
until atropinization occurred, followed by an infusion) in 156 patients with acute OP insecticide
self-poisoning. Most importantly, the doubling dose regimen resulted in an 84% reduction in the
mean time to atropinization, from 152 min to 24 min, with only a modest increase in total dose
of atropine required (72). This much faster resuscitation was associated with a fall in case fatality
from 22.5% to 8.0% and a reduction in the proportion of patients showing atropine toxicity from
28.4% to 12%.

After initial loading, atropine should be continued as an infusion titrated against cholinergic
features. The infused dose can often be reduced to around 1 mg/h after several hours (73). Patients
should thereafter be carefully and frequently observed for evidence of (a) deteriorating neurologic
function and potential paralysis requiring ventilation and (b) either recurrent cholinergic signs (15)
suggestive of inadequate atropine dosing or atropine toxicity (74) indicative of a need to reduce
atropine dosing.

One concern in the rural Asian district hospitals where the majority of patients are seen is the
intermittent supply of oxygen. For many years, guidelines have indicated that patients should not
receive atropine until hypoxia has been treated with oxygen due to the risk of inducing ventricular
tachydysrhythmias (68, 75). Unfortunately, many of these hospitals do not have easy access to
oxygen. At the same time, atropine is effective at treating hypoxia by reversing bronchorrhea
and bronchospasm. A review of the data cited in the guidelines revealed just two case reports, of
debatable relevance, of cardiotoxicity associated with atropine (75). A large Sri Lankan case series in
which patients received atropine on admission, whether oxygen was available or not, demonstrated
no evidence of fatal atropine-induced dysrhythmias in such patients (75). Ventricular dysrhythmias
were observed to occur late in 10% of a small German case series; however, the dysrhythmias
resolved with atropine therapy (73).

Overall, these guidelines have caused unnecessary confusion, impeded good clinical care, and
are not evidence based. Atropine can be given, if clinically necessary, before oxygen becomes
available.

Oximes

In the 1950s, groups in the United States and United Kingdom developed pralidoxime, a drug that
reactivated AChE inhibited by OP compounds. Initially, it was used for occupational poisoning
with high-potency (WHO Class I) diethoxy OP insecticides such as parathion (76, 77). For such
poisonings with diluted insecticide, solvents and other coformulants are not relevant. Patients
treated with 1 g of pralidoxime showed good reactivation of red blood cell AChE and clinical
recovery, leading to recommendations that it be used for all OP insecticide–poisoned patients (68).

However, clinicians quickly recognized that much larger doses than 1 g might be needed for
patients with intentional overdoses, who drink large quantities of OP in combination with solvents,
particularly for less toxic WHO Class II pesticides such as malathion where large quantities need
to be ingested to elicit moderate-severe poisoning (78). Namba et al. (78, 79) recommended doses
of 0.5 g/h after a loading dose for such high-dose poisoning. However, this advice did not appear
in guidelines and most patients over the following decades received 1 g every 6 h for 1–2 days.

An observational study performed in 1991 reported that the absence of pralidoxime for 6 months
in Sri Lanka was not associated with worse outcomes, suggesting a lack of clinical effect (80).
Advocates responded that higher doses, akin to Namba et al.’s high-dose regimen, should be
given to all patients (81). WHO guidelines that were published in 2000 reinforced the view
(82). However, in vitro studies with human red blood cell AChE and clinical studies of AChE
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Table 1 Meta-analysis of the effectiveness of pralidoxime chloride for preventing death in organophosphorus
insecticide–poisoned patients

Treatment 

Study or subgroup

group (2-PAM) Placebo group Weight 

(%)

Risk ratio

Year

Risk ratio

Events Total Events Total M-H, random, 95% CI M-H, random, 95% CI

Cherian et al. (129) 16 55 3 55 13.7 5.33 [1.65, 17.27] 1997

Cherian et al. (130) 1 10 1 11 3.5 1.10 [0.08, 15.36] 2005

Eddleston et al. (91) 30 121 18 114 33.2 1.57 [0.93, 2.66] 2009

Banerjee et al. (131) 11 60 8 60 21.5 1.38 [0.60, 3.18] 2011

Syed et al. (132) 13 50 14 50 28.1 0.93 [0.49, 1.77] 2015

Total (95% CI) 296 290 100.0 1.54 [0.92, 2.56]

Total events 71 44 0.01 0.1 1 10 100
Favors (pralidoxime) Favors (placebo)

Heterogeneity: T2 = 0.13; χ2 = 6.89, df = 4 (p = 0.14); I2 = 42%. Test for overall effect Z = 1.66 (p = 0.10).
Abbreviations: 2-PAM, pralidoxime chloride; CI, confidence interval; M-H, Mantel-Haenszel. Table adapted from Reference 88 with permission from
Springer.

inhibition indicate that the reactivation by oximes of AChE inhibited by dimethoxy or S-alkyl OP
insecticides is much less effective than the reactivation of diethoxy OP insecticides (see the section
titled Organophosphorus Insecticide Chemistry) (83, 84).

Treatment with oximes of poisoning with the dimethoxy thion OP dimethoate additionally
seems to be even less effective than expected (11, 34). This may be due to the production of
isodimethoate (85) in the pesticide bottle, when stored in hot conditions, before ingestion by the
patient, producing an S-alkyl OP that is resistant to oximes.

These findings indicate that oximes are unlikely to be effective for many patients who are
poisoned by dimethoxy or S-alkyl OP insecticides. Oximes may also be ineffective for all OP
insecticide poisoning cases if the concentration of pesticide in the body is very high, overwhelming
the capacity of oximes to reactivate AChE (86).

Systematic reviews of clinical trials of pralidoxime, including high-dose regimens (infusions of
0.5 g/h after a loading dose), compared with placebo support the idea that it does not prevent death
or intubation (Tables 1 and 2) or shorten the duration of ventilation (87, 88). Of note, several of
these studies included high-dose infusions for up to 7 days without benefit (89), indicating that
inadequate dosing (81, 86) is not responsible for the lack of effect. The lack of efficacy may be
due to the very large doses of OP insecticide ingested during self-harm. For example, a typical
ingested dose of 100 mL of a 40% parathion formulation contains 40 g of active ingredient. This
equals 666 mg/kg parathion for a 60-kg adult, a dose 51-fold greater than the rat oral median
lethal dose for parathion of 13 mg/kg (7). The clinically tolerated doses of oxime may be unable
to counter such huge doses, with any reactivated oxime simply being rapidly inhibited again by
the high blood OP concentration (44).

An RCT of 200 OP-poisoned patients compared two pralidoxime regimens [2 g loading dose
over 30 min followed by either 1 g pralidoxime (over 1 h) every 4 h for 2 days (total dose 14 g) or
an infusion of 1 g/h for 2 days (total dose 50 g)], showing decreased mortality (90). It is unclear
how these data complement the placebo-controlled data, especially since the patients were less
severely poisoned than in other studies and a large proportion were intubated at baseline and cared
for in an intensive care unit [66% versus, for example, 17% in a Sri Lankan RCT (91)].

Some groups have reported a benefit by titrating pralidoxime dosing against BuChE reacti-
vation (92, 93). However, OP insecticides inhibit BuChE to variable degrees (26), and AChE
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Table 2 Meta-analysis of the effectiveness of pralidoxime chloride for preventing intubation in organophosphorus
insecticide–poisoned patients

Study or subgroup

Treatment 
group (2-PAM) Placebo group Weight 

(%)

Risk ratio

Year

Risk ratio

Events Total Events Total M-H, random, 95% CI M-H, random, 95% CI

Cherian et al. (129) 37 55 22 55 31.0 1.68 [1.16, 2.44] 1997

Cherian et al. (130) 7 10 4 11 7.6 1.93 [0.80, 4.64] 2005

Eddleston et al. (91) 26 121 24 114 20.6 1.02 [0.62, 1.67] 2009

Banerjee et al. (131) 5 60 3 60 3.2 1.67 [0.42, 6.66] 2011

Syed et al. (132) 31 50 29 50 37.6 1.07 [0.78, 1.47] 2015

Total (95% CI) 296 290 100.0 1.29 [1.00, 1.66]

Total events 106 82
0.01 0.1 1 10 100

Favors (pralidoxime) Favors (placebo)

Heterogeneity: T2 = 0.02; χ2 = 5.05, df = 4 ( p = 0.28); I2 = 21%. Test for overall effect Z = 1.99 ( p = 0.05).
Abbreviations: 2-PAM, 2-pyridine aldoxime methyl chloride; CI, confidence interval; M-H, Mantel-Haenszel. Table adapted from Reference 88 with
permission from Springer.

inhibition may differ from BuChE inhibition (34). A pralidoxime 2 g dose variably reactivated
BuChE in patients who were poisoned by two WHO Class II diethoxy OP insecticides, chlorpyri-
fos and quinalphos; however, unlike AChE reactivation, the BuChE reactivation was not sustained
(94). This dose did not reactivate BuChE inhibited by the dimethoxy OPs dimethoate or fenthion
at all. A pralidoxime 1 g dose produced no reactivation with any OP insecticides (94). This sug-
gests that titrating pralidoxime dosing against BuChE reactivation is unlikely to be effective, unless
perhaps the particular OP ingested and its pharmacodynamics are known.

Although pralidoxime has been the key oxime used worldwide since the 1960s, there are other
more potent oximes such as obidoxime and trimedoxime (43, 86). Lower concentrations of these
oximes are required to reactivate human red blood cell AChE ex vivo (43); however, aging still oc-
curs, indicating the need for early therapy. Although careful observational data have been reported
for obidoxime treatment of OP insecticide self-poisoned patients showing clinical improvement
(41, 73), there are no clinical trial data showing clinical effectiveness.

Benzodiazepines

Benzodiazepine γ-aminobutyric acid (GABA) agonists such as diazepam or midazolam are rec-
ommended to settle agitation, prevent or treat seizures, and reduce fasciculations (95). Animal
studies of OP nerve agent poisoning indicate that they can also prevent neuronal damage (96, 97);
however, the relevance of this pathology to human poisoning remains unclear (95). Although they
are a classically described feature of OP insecticide poisoning (13, 98), overt seizures are uncom-
mon (1–3%) in hospitalized adult patients (11, 22), perhaps due to effective atropinization (99).
Seizures may be more common in children (100, 101). No clinical trials have assessed whether
benzodiazepine administration in OP insecticide self-poisoning offers clinical benefit (95).

NOVEL TREATMENTS FOR ORGANOPHOSPHORUS INSECTICIDE
POISONING

Current therapy is based on two treatments that were first reported in the 1950s. Many more
possible therapies have been tested in animals; a few have made it into small, inadequately powered
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clinical studies (102). There is an urgent need to find additional treatments that can complement
and augment the often inadequate current therapy.

Magnesium Sulfate and Calcium Channel Blockade

The use of magnesium or calcium channel blockers (CCBs) such as nifedipine in OP compound
poisoning has long been advocated (103, 104). The precise mechanism of how this intervention
might work remains unclear. Calcium is required in the presynaptic terminus for the exocytosis of
acetylcholine to occur. Interruption of the calcium flow through channels by magnesium or CCBs
may be sufficient to reduce the synaptic concentration of acetylcholine. OP insecticides also inhibit
Ca2+ ATPase, the enzyme responsible for removing cytosolic Ca2+ (105). Rat studies suggest that
CCBs reactivate OP-inhibited Ca2+ ATPase, decreasing intracellular Ca2+ concentrations and
theoretically reducing acetylcholine release.

Administration of CCBs or magnesium to rodents before or soon after OP exposure, in addition
to atropine and/or oxime, reduces mortality (reviewed in 106). A nonrandomized Iranian clinical
study of 4 g magnesium sulfate (MgSO4) in acute OP poisoning during 2003–2004 suggested
that it was effective in reducing mortality and length of hospital stay (107). A total of eight clinical
studies or trials have now been performed (441 patients; 239 patients receiving MgSO4, 202 control
patients; MgSO4 doses up to 26 g/day), all of small-to-modest size and with marked risk of bias.
The pooled odds ratios for MgSO4 for mortality and need for intubation and ventilation for all
eight studies were 0.55 [95% confidence interval (CI), 0.32–0.94] and 0.52 (95% CI, 0.34–0.79),
respectively (106). This result suggests that this intervention might be beneficial, but it is far from
definitive due to the size of the RCTs and the risk of bias. A large RCT is required to provide
clear evidence.

Sodium Bicarbonate for Plasma Alkalinization

OP insecticide poisoning often causes a metabolic and respiratory acidosis due to hypotension,
hypoxia, and hypoventilation. This usually settles with fluid resuscitation, oxygen, atropinization,
and mechanical ventilation. However, clinicians have proposed that sodium bicarbonate should
be used as an antidote for OP insecticide poisoning to alkalinize the plasma (108, 109), as is
done routinely to treat sodium channel blockade in tricyclic antidepressant poisoning (110). The
proposed mechanism of effect is poorly defined but may include enhanced pesticide clearance
from the body, improved efficacy of oximes, and a direct effect on NMJ function (111).

A systematic review of the literature identified only five low-quality clinical studies that together
suggested a possible benefit from plasma alkalinization (111). However, attempts to study the
approach in Sri Lankan district hospitals with few intensive care resources indicated difficulty
in resource-poor hospitals that were inexperienced in giving bicarbonate (112). Further studies
are required to understand whether it benefits patients and how it could be used in low-income
countries that see the majority of patients.

Salbutamol

OP insecticide poisoning is characterized by bronchorrhea and noncardiogenic pulmonary edema,
which hinder oxygen exchange. Adequate atropinization turns off the fluid production, but it does
not increase the removal of fluid from alveoli. A complementary therapy that increases fluid
removal from alveoli could speed up the return of effective oxygen exchange and resuscitation.
Salbutamol accelerates alveolar fluid clearance by enhancing salt and water transfer across alveolar
and distal airways (113). It may also reverse OP insecticide–induced bronchoconstriction, thereby
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Figure 4
Effect of nebulized salbutamol on peripheral blood oxygen saturations in OP insecticide self-poisoned patients. (a) Mean (SEM) oxygen
saturations of patients receiving no salbutamol (No Salb, red ), 2.5 mg salbutamol (Salb 2.5, blue), and 5 mg salbutamol (Salb 5, orange)
over the first 60 min of resuscitation. (b) Survival analysis of time to sustained oxygen saturations >95% for the three groups.
Abbreviations: OP, organophosphorus; Salb, salbutamol; SEM, standard error of the mean. Figure adapted from Reference 115 with
permission from Taylor & Francis.

improving respiratory mechanics by decreasing airflow resistance and peak airway pressures as
well as increasing dynamic compliance (114).

A small phase II dose-response study was performed in a resource-poor hospital in Bangladesh
to explore the effects of nebulized salbutamol (115). OP insecticide–poisoned patients (n = 75)
requiring atropine for cholinergic features received a single 2.5 or 5 mg dose of salbutamol, or
saline placebo, and their peripheral blood oxygen saturations were monitored every minute for
60 min. A mild tachycardia occurred in response to the higher dose of salbutamol, suggesting
absorption. Oxygen saturations did not improve with the salbutamol (Figure 4). Indeed, recovery
had already occurred by 20 min after placebo, and the higher dose was associated with a longer time
to oxygen saturations that were consistently >95% (115). It is possible that this negative finding
was due to the inevitable variation between patient groups seen in this small RCT; however, the
results do not encourage additional studies in light of the other possible treatments.

Nicotinic Antagonists

A key problem with OP insecticide poisoning is the NMJ dysfunction (intermediate syndrome)
that may occur hours or days after exposure (17, 116). The mechanism is uncertain; however,
it occurs in the face of adequate atropinization, suggesting a nonmuscarinic effect. The main
mechanism proposed is overstimulation of post- and/or presynaptic nicotinic receptors at the
NMJ (23, 117). A competitive nicotinic blockade, with a drug such as rocuronium, may prevent
this overstimulation and damage (118). Phase II studies are required to explore the best way to
give nicotinic antagonists to OP-poisoned patients.

Lipid Emulsions

Lipid emulsions have been widely recommended for acute poisoning with lipid-soluble poi-
sons, although the evidence and rationale are weak for treatment of oral overdoses rather than
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intravenous local anesthetic overdoses (119, 120). Many OP insecticides are lipid soluble, and it
is possible that intravenous lipid emulsions may redistribute the poison (121), but they may also
increase absorption from the gut, thereby increasing toxicity. A rodent study has suggested that
there may be a benefit from this treatment (122). Similarly, an uncontrolled study of 40 patients,
published in abstract form, also suggested some benefit compared to historical controls (123).
However, a recent in vitro study has suggested that the lipid emulsion may actually stabilize the
OP from degradation (124). More studies are required to identify whether the approach is associ-
ated with a benefit for certain OP insecticides and/or worse toxicity before it can be used outside
a clinical trial.

Acetylcysteine

Oxidative stress has been reported in OP insecticide poisoning, likely due to initial hypoxia and
tissue hypoperfusion. However, some researchers have proposed that oxidative stress is causal for
poor outcomes rather than being associated with severe poisoning (125, 126). Acetylcysteine has
been tested as a treatment for rodents (126) and in small, underpowered RCTs (127, 128). Again,
larger RCTs are required before its clinical use.

CONCLUSIONS

OP insecticide self-poisoning is a complex multi-organ condition, which involves inhibition of
cholinesterases and perhaps other enzymes, and large solvent doses. Current treatment is not very
effective—around 100,000 people die each year—and aims only to reactivate AChE and counter
the effects of excess acetylcholine at muscarinic receptors. Bans of OP insecticides and formulation
changes will rapidly reduce the number of deaths (10). However, in the near future, widespread
use of cheap OP insecticides will continue in agriculture, facilitating millions of cases of self-harm,
all requiring much more effective therapy than is currently available.

More effort must go into better understanding the pivotal pathology of the poisoning, including
solvents, since this may reveal more therapeutic avenues. Greater effort is also required in setting
up multiple phase II studies to understand how a therapy might work and then designing and
funding large RCTs that can provide definitive data. Unfortunately, the great variability in self-
poisoning—patients ingesting variable doses of different OP insecticides with differing properties
and differing solvents and being hospitalized at variable times after exposure—means that phase II
clinical trials will always be heterogeneous at baseline and difficult to interpret. RCTs will need to
be large to counter this variation. A serious effort is required to give OP insecticide self-poisoning
the clinical attention it deserves (12) and to set up high-quality RCTs wherever OP insecticide
self-poisoning is an important clinical problem.
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Uwe Fuhr, Chih-hsuan Hsin, Xia Li, Wafaâ Jabrane, and Fritz Sörgel � � � � � � � � � � � � � � � 507

Metals and Mechanisms of Carcinogenesis
Qiao Yi Chen, Thomas DesMarais, and Max Costa � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 537

Modulating NRF2 in Disease: Timing Is Everything
Matthew Dodson, Montserrat Rojo de la Vega, Aram B. Cholanians,

Cody J. Schmidlin, Eli Chapman, and Donna D. Zhang � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 555

Cardiovascular Pharmacogenomics: Does It Matter If You’re Black or
White?
Tanima De, C. Sehwan Park, and Minoli A. Perera � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 577

Therapeutic Oligonucleotides: State of the Art
C.I. Edvard Smith and Rula Zain � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 605

Indexes

Cumulative Index of Contributing Authors, Volumes 55–59 � � � � � � � � � � � � � � � � � � � � � � � � � � � 631

Cumulative Index of Article Titles, Volumes 55–59 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 635

Errata

An online log of corrections to Annual Review of Pharmacology and Toxicology articles
may be found at http://www.annualreviews.org/errata/pharmtox

Contents vii

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

9.
59

:3
41

-3
60

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
01

/1
4/

19
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Pharmacology and Toxicology
Online
	Most Downloaded Pharmacology and Toxicology
 Reviews 
	Most Cited Pharmacology and Toxicology
 Reviews 
	Annual Review of Pharmacology and Toxicology
 Errata 
	View Current Editorial Committee

	All Articles in the Annual Review of Pharmacology and Toxicology, Vol. 59
	Role of Cell Death in Toxicology: Does It Matter How Cells Die?
	Introduction to the Theme “New Therapeutic Targets”
	Systems Pharmacology: Defining the Interactions of Drug Combinations
	Drug Targets for Heart Failure with Preserved Ejection Fraction: A Mechanistic Approach and Review of Contemporary Clinical Trials
	Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes
	Environmental Obesogens: Mechanisms and Controversies
	The Exposome: Molecules to Populations
	Challenges in Orphan Drug Development: Identification of Effective Therapy for Thyroid-Associated Ophthalmopathy
	Fingolimod: Lessons Learned and New Opportunities for Treating Multiple Sclerosis and Other Disorders
	The Neurobiology and Pharmacotherapy of Posttraumatic Stress Disorder
	The Placebo Effect in Pain Therapies
	Molecular Pharmacology and Neurobiology of Rapid-Acting Antidepressants
	Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation
	The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson’s Disease
	Therapeutic Approaches to the Treatment of Tinnitus
	Muscle Wasting Diseases: Novel Targets and Treatments
	Novel Clinical Toxicology and Pharmacology of OrganophosphorusInsecticide Self-Poisoning
	New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy
	Pharmacologic Targeting of Hypoxia-Inducible Factors
	Surviving in the Valley of Death: Opportunities and Challenges in Translating Academic Drug Discoveries
	Moving from the Trial to the Real World: Improving Medication Adherence Using Insights of Implementation Science
	Organoids for Drug Discovery and Personalized Medicine
	Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions
	Recent Developments in Understanding Barrier Mechanisms in the Developing Brain: Drugs and Drug Transporters in Pregnancy, Susceptibility or Protection in the Fetal Brain?
	Assessment of Pharmacokinetic Drug–Drug Interactions in Humans: In Vivo Probe Substrates for Drug Metabolism and Drug Transport Revisited
	Metals and Mechanisms of Carcinogenesis
	Modulating NRF2 in Disease: Timing Is Everything
	Cardiovascular Pharmacogenomics: Does It Matter If You’re Black or White?
	Therapeutic Oligonucleotides: State of the Art


