60 research outputs found

    Comparative studies of TIMP-1 immunohistochemistry, TIMP-1 FISH analysis and plasma TIMP-1 in glioblastoma patients

    Get PDF
    Tissue inhibitor of metalloproteinases-1 (TIMP-1) has been associated with poor prognosis and resistance towards chemotherapy in several cancer forms. In a previous study we found an association between a low TIMP-1 tumor immunoreactivity and increased survival for glioblastoma patients, when compared to moderate and high TIMP-1 tumor immunoreactivity. The aim of the present study was to further evaluate TIMP-1 as a biomarker in gliomas by studying TIMP-1 gene copy numbers by fluorescence in situ hybridization (FISH) on 33 glioblastoma biopsies and by measuring levels of TIMP-1 in plasma obtained pre-operatively from 43 patients (31 gliomas including 21 glioblastomas) by enzyme-linked immunosorbent assay (ELISA). The results showed TIMP-1 gene copy numbers per cell ranging from 1 to 5 and the TIMP-1/CEN-X ratio ranging between 0.7 and 1.09, suggesting neither amplification nor loss of the TIMP-1 gene. The TIMP-1 protein levels measured in plasma were not significantly higher than TIMP-1 levels measured in healthy subjects. No correlation was identified between TIMP-1 tumor cell immunoreactivities and the TIMP-1 gene copy numbers or the plasma TIMP-1 levels. In conclusion, high immunohistochemical TIMP-1 protein levels in glioblastomas were not caused by TIMP-1 gene amplification and TIMP-1 in plasma was low and not directly related to tumor TIMP-1 immunoreactivity. The study suggests that TIMP-1 immunohistochemistry is the method of choice for future clinical studies evaluating TIMP-1 as a biomarker in glioblastomas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11060-016-2252-4) contains supplementary material, which is available to authorized users

    The role of Allee effect in modelling post resection recurrence of glioblastoma

    Get PDF
    Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltration into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later time. We use a reaction-diffusion equation based model of tumour growth to investigate how the invasion front is delayed by resection, and how this depends on the density and behaviour of the remaining cancer cells. We show that the delay time is highly sensitive to qualitative details of the proliferation dynamics of the cancer cell population. The typically assumed logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the density at small cell densities. Our analysis suggests that cooperative behaviour of cancer cells, analogous to the Allee effect in ecology, can play a critical role in determining the time until tumour recurrence

    TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain

    Get PDF
    Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1′s ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression

    In vitro models of medulloblastoma: choosing the right tool for the job

    Get PDF
    The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research
    • …
    corecore