32 research outputs found

    Variation of microphysics in wind bubbles: an alternative mechanism for explaining the rebrightenings in Gamma-ray burst afterglows

    Get PDF
    Conventionally, long Gamma-ray bursts (GRBs) are thought to be caused by the core collapses of massive stars. During the lifetime of a massive star, a stellar wind bubble environment should be produced. Furthermore, the microphysics shock parameters may vary along with the evolution of the fireball. Here, we investigate the variation of the microphysics shock parameters under the condition of wind bubble environment, and allow the microphysics shock parameters to be discontinuous at shocks in the ambient medium. It is found that our model can acceptably reproduce the rebrightenings observed in GRB afterglows, at least in some cases. The effects of various model parameters on rebrightenings are investigated. The rebrightenings observed in both the R-band and X-ray afterglow light curves of GRB 060206, GRB 070311 and GRB 071010A are reproduced in this model. © 2009 The Authors. Journal compilation © 2009 RAS.postprin

    Behaviour change interventions to reduce second-hand smoke (SHS) exposure at home in pregnant women - A systematic review and intervention appraisal

    Get PDF
    Abstract Background Second-hand smoke (SHS) exposure during pregnancy is associated with poor pregnancy and foetal outcomes. Theory-based behaviour change interventions (BCI) have been used successfully to change smoking related behaviours and offer the potential to reduce exposure of SHS in pregnant women. Systematic reviews conducted so far do not evaluate the generalisability and scalability of interventions. The objectives of this review were to (1) report the BCIs for reduction in home exposure to SHS for pregnant women; and (2) critically appraise intervention-reporting, generalisability, feasibility and scalability of the BCIs employed. Methods Standard methods following PRISMA guidelines were employed. Eight databases were searched from 2000 to 2015 in English. The studies included used BCIs on pregnant women to reduce their home SHS exposure by targeting husbands/partners. The Workgroup for Intervention Development and Evaluation Research (WIDER) guidelines were used to assess intervention reporting. Generalisability, feasibility and scalability were assessed against criteria described by Bonell and Milat. Results Of 3479 papers identified, six studies met the inclusion criteria. These studies found that BCIs led to increased knowledge about SHS harms, reduction or husbands quitting smoking, and increased susceptibility and change in level of actions to reduce SHS at home. Two studies reported objective exposure measures, and one reported objective health outcomes. The studies partially followed WIDER guidelines for reporting, and none met all generalisability, feasibility and scalability criteria. Conclusions There is a dearth of literature in this area and the quality of studies reviewed was moderate to low. The BCIs appear effective in reducing SHS, however, weak study methodology (self-reported exposure, lack of objective outcome assessment, short follow-up, absence of control group) preclude firm conclusion. Some components of the WIDER checklist were followed for BCI reporting, scalability and feasibility of the studies were not described. More rigorous studies using biochemical and clinical measures for exposures and health outcomes in varied study settings are required. Studies should report interventions in detail using WIDER checklist and assess them for generalisability, feasibility and scalability. Trial registration CRD40125026666

    SIMS: A Hybrid Method for Rapid Conformational Analysis

    Get PDF
    Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their structure. Describing the exact details of these conformational changes, however, remains a central challenge for computational biology due the enormous computational requirements of the problem. This has engendered the development of a rich variety of useful methods designed to answer specific questions at different levels of spatial, temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm, borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate, analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N, exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose- Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields, demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems

    Low back pain in older adults: risk factors, management options and future directions

    Full text link

    Canine mast cell tumours: a review of the pathogenesis, clinical features, pathology and treatment

    Full text link
    Mast cells (MCs) are well known for their neoplastic transformation in solitary and multiple cutaneous mast cell tumours (MCTs), as well as visceral and systemic mastocytosis. Dogs have an unique risk of developing cutaneous MCTs, and they account for 7% to 21% of all canine skin tumours. The aetiology of canine MCTs is unknown but is probably multi-factorial. This article reviews uptodate knowledge on the pathogenesis, the clinical presentation, the clinical prognostic factors, the diagnostic workup including clinical staging, cytological findings, histological findings and the various grading systems which have been evaluated based on morphology, the assessment of proliferation markers and other factors such as vessel density. Furthermore detailed information about current treatment protocols for canine cutaneous MCTs are provided
    corecore