2,275 research outputs found
Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives
Yeast immobilization with low-cost carrier materials is a suitable strategy to optimize the fermentation of lignocellulosic hydrolysates for the production of second-generation (2G) ethanol. It is defined as the physical confinement of intact cells to a certain region of space (the carrier) with the preservation of their biological activity. This technological approach facilitates promising strategies for second-generation bioethanol production due to the enhancement of the fermentation performance that is expected to be achieved. Using immobilized cells, the resistance to inhibitors contained in the hydrolysates and the co-utilization of sugars are improved, along with facilitating separation operations and the reuse of yeast in new production cycles. Until now, the most common immobilization technology used calcium alginate as a yeast carrier but other supports such as biochar or multispecies biofilm membranes have emerged as interesting alternatives. This review compiles updated information about cell carriers and yeast-cell requirements for immobilization, and the benefits and drawbacks of different immobilization systems for second-generation bioethanol production are investigated and compared. © 2021 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.publishedVersio
Noncentral bimatrix variate generalised beta distributions
In this paper, we determine the density functions of nonsymmetrised doubly
noncentral matrix variate beta type I and II distributions. The nonsymetrised
density functions of doubly noncentral and noncentral bimatrix variate
generalised beta type I and II distributions are also obtained.Comment: 14 page
A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding
The final publication is available at Springer via http://dx.doi.org/10.1007/s12289-015-1225-zThis paper addresses the numerical simulation of void formation and transport during mold filling in Resin Transfer Molding (RTM). The saturation equation, based on a two-phase flow model resin/air, is coupled with Darcy s law and mass conservation to simulate the unsaturated filling flow
that takes place in a RTM mold when resin is injected through the fiber bed. These equations lead to a system composed of an advection diffusion equation for saturation including capillary effects and an elliptic equation for pressure taking into account the effect of air residual saturation. The model introduces the relative permeability as a function of resin saturation. When capillary effects are omitted, the hyperbolic nature of the saturation equation and its strong coupling with Darcy
equation through relative permeability represent a challenging numerical issue. The combination of the constitutive physical laws relating permeability to saturation with the coupled system
of the pressure and saturation equations allows predicting the saturation profiles. The model was validated by comparison with experimental data obtained for a fiberglass reinforcement
injected in a RTM mold at constant flow rate. The saturation measured as a function of time during the resin impregnation of the fiber bed compared very well with numerical predictions.The authors acknowledge financial support of the Spanish Government (Projects DPI2010-20333 and DPI2013-44903-R-AR), of the National Science and Research Council of Canada (NSERC) and of the Canada Reseach Chair (CRC) program.GascĂłn MartĂnez, ML.; GarcĂa Manrique, JA.; Lebel, F.; Ruiz, E.; Trochu, F. (2016). A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding. International Journal of Material Forming. 9(2):229-239. doi:10.1007/s12289-015-1225-zS22923992Patel N, Lee LJ (1996) Modeling of void formation and removal in liquid composite molding. Part I: wettability analysis. Polym Compos 17(1):96â103Ruiz E, Achim V, Soukane S, Trochu F, BrĂ©ard J (2006) Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 66(3â4):475â486Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos A: Appl Sci Manuf 37(6):890â902Park CH, Lee W (2011) Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J Reinf Plast Compos 30(11):957â977Pillai KM (2004) Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts. J Compos Mater 38(23):2097â2118Breard J, Saouab A, Bouquet G (2003) Numerical simulation of void formation in LCM. Compos A: Appl Sci Manuf 34:517â523Breard J, Henzel Y, Trochu F, Gauvin R (2003) Analysis of dynamic flows through porous media. Part I: comparison between saturated and unsaturated flows in fibrous reinforcements. Polym Compos 24(3):391â408Parnas RS, Phelan FR Jr (1991) The effect of heterogeneous porous media on mold filling in Resin Transfer Molding. SAMPE Q 22(2):53â60Parseval DY, Pillai KM, Advani SG (1997) A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp Porous Media 27(3):243â264Pillai KM (2002) Governing equations for unsaturated flow through woven fiber mats. Part 1. Isothermal flows. Compos A: Appl Sci Manuf 33(7):1007â1019Simacek P, Advani SG (2003) A numerical model to predict fiber tow saturation during Liquid Composite Molding. Compos Sci Technol 63:1725â1736GarcĂa JA, GascĂłn L, Chinesta F (2010) A flux limiter strategy for solving the saturation equation in RTM process simulation. Compos A: Appl Sci Manuf 41:78â82Chui WK, Glimm J, Tangerman FM, Jardine AP, Madsen JS, Donnellan TM, Leek R (1997) Process modeling in Resin Transfer Molding as a method to enhance product quality. SIAM Rev 39(4):714â727Nordlund M, Michaud V (2012) Dynamic saturation curve measurement for resin flow in glass fibre reinforcement. Compos A: Appl Sci Manuf 43:333â343GarcĂa JA, Ll G, Chinesta F (2003) A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Comput Methods Appl Mech Eng 192(7â8):877â893GarcĂa JA, Ll G, Chinesta F, Trochu F, Ruiz E (2010) An efficient solver of the saturation equation in liquid composite molding processes. Int J Mater Form 3(2):1295â1302Lebel F (2012) ContrĂŽle de la fabrication des composites par injection sur renforts. Ăcole Polytechnique de MontrĂ©al, CanadaVan Genuchten MT (1980) Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892â898Buckley SE, Leverett MC (1942) Mechanism of fluid displacement in sands. Pet Trans AWME 146:107â116Lundstrom TS, Gebart BR (1994) Influence from process parameters on void formation in Resin Transfer Molding. Polym Compos 15(1):25â33Lundstrom TS (1997) Measurement of void collapse during Resin Transfer Molding. Compos A: Appl Sci Manuf 28(3):201â214Lundstrom TS, Frishfelds V, Jakovics A (2010) Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry. Compos A: Appl Sci Manuf 41:83â92Lebel F, Fanaei A, Ruiz E, Trochu F (2012) Experimental characterization by fluorescence of capillary flows in the fiber tows of engineering fabrics. Open J Inorg Non-Metallic Mater 2(3):25â45Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University. Hydrology Papers 1â37Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Monthly 19(1):38â4
Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
NSAID Use Selectively Increases the Risk of Non-Fatal Myocardial Infarction: A Systematic Review of Randomised Trials and Observational Studies
Recent clinical trials and observational studies have reported increased coronary events associated with non steroidal anti-inflammatory drugs (NSAIDs). There appeared to be a disproportionate increase in non-fatal versus fatal events, however, numbers of fatal events in individual studies were too small, and event rates too low, to be meaningful.We undertook a pooled analysis to investigate the effect of NSAIDs on myocardial infarction (MI) risk with the specific aim to differentiate non-fatal from fatal events.We searched Pubmed (January, 1990 to March, 2010) for observational studies and randomised controlled trials that assessed the effect of NSAIDs (traditional or selective COX-2 inhibitors [coxibs]) on MI incidence separately for fatal and non-fatal events. Summary estimates of relative risk (RR) for non-fatal and fatal MIs were calculated with a random effects model.NSAID therapy carried a RR of 1.30 (95% CI, 1.20-1.41) for non-fatal MI with no effect on fatal MI (RR 1.02, 95% CI, 0.89-1.17) in six observational studies. Overall, the risk increase for non-fatal MI was 25% higher (95% CI, 11%-42%) than for fatal MI. The two studies that included only individuals with prior cardiovascular disease presented risk estimates for non-fatal MI on average 58% greater (95% CI, 26%-98%) than those for fatal MI. In nine randomised controlled trials, all investigating coxibs, the pooled RR estimate for non-fatal MI was 1.61 (95% CI, 1.04-2.50) and 0.86 (95% CI 0.51-1.47) for fatal MIs.NSAID use increases the risk of non-fatal MI with no substantial effect on fatal events. Such differential effects, with potentially distinct underlying pathology may provide insights into NSAID-induced coronary pathology. We studied the association between the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of myocardial infarction (MI), separating non-fatal from fatal events, summarizing the evidence from both observational studies and randomised controlled trials. An increased risk of non-fatal MI was clearly found in both types of studies while use of NSAID did not confer an increased risk of fatal MI. Our findings provide support for the concept that thrombi generated under NSAID treatment could be different from spontaneous thrombi
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 Ă 10â»ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 Ă 10â»ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 Ă 10â»â·) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 Ă 10â»ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 Ă 10â»ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
Office and 24-hour heart rate and target organ damage in hypertensive patients
<p>Abstract</p> <p>Background</p> <p>We investigated the association between heart rate and its variability with the parameters that assess vascular, renal and cardiac target organ damage.</p> <p>Methods</p> <p>A cross-sectional study was performed including a consecutive sample of 360 hypertensive patients without heart rate lowering drugs (aged 56 ± 11 years, 64.2% male). Heart rate (HR) and its standard deviation (HRV) in clinical and 24-hour ambulatory monitoring were evaluated. Renal damage was assessed by glomerular filtration rate and albumin/creatinine ratio; vascular damage by carotid intima-media thickness and ankle/brachial index; and cardiac damage by the Cornell voltage-duration product and left ventricular mass index.</p> <p>Results</p> <p>There was a positive correlation between ambulatory, but not clinical, heart rate and its standard deviation with glomerular filtration rate, and a negative correlation with carotid intima-media thickness, and night/day ratio of systolic and diastolic blood pressure. There was no correlation with albumin/creatinine ratio, ankle/brachial index, Cornell voltage-duration product or left ventricular mass index. In the multiple linear regression analysis, after adjusting for age, the association of glomerular filtration rate and intima-media thickness with ambulatory heart rate and its standard deviation was lost. According to the logistic regression analysis, the predictors of any target organ damage were age (OR = 1.034 and 1.033) and night/day systolic blood pressure ratio (OR = 1.425 and 1.512). Neither 24 HR nor 24 HRV reached statistical significance.</p> <p>Conclusions</p> <p>High ambulatory heart rate and its variability, but not clinical HR, are associated with decreased carotid intima-media thickness and a higher glomerular filtration rate, although this is lost after adjusting for age.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01325064">NCT01325064</a></p
Further insights into the operation of the Chinese number system: Competing effects of Arabic and Mandarin number formats
Here we report the results of a speeded relative quantity task with Chinese participants. On each trial a single numeral (the probe) was presented and the instructions were to respond as to whether it signified a quantity less than or greater than five (the standard). In separate blocks of trials, the numerals were either presented in Mandarin or in Arabic number formats. In addition to the standard influence of numerical distance, a significant predictor of performance was the degree of physical similarity between the probe and the standard as depicted in Mandarin. Additionally, competing effects of physical similarity, defined in terms of the Arabic number format, were also found. Critically the size of these different effects of physical similarity varied systematically across individuals such that larger effects of one compensated for smaller effects of the other. It is argued that the data favor accounts of processing that assume that different number formats access different format-specific representations of quantities. Moreover, for Chinese participants the default is to translate numerals into a Mandarin format prior to accessing quantity information. The efficacy of this translation process is itself influenced by a competing tendency to carry out a translation into Arabic format
- âŠ